【LOJ#2687】Vim(动态规划)
【LOJ#2687】Vim(动态规划)
题面
题解
发现移动的路径一定是每次往后跳到下一个某个字符的位置,然后往回走若干步,删掉路径上的所有\(e\),然后继续执行这个操作。
这里稍微介绍一下线头\(dp\),大概是把转移的路径画出来,最终要求能形成一个环,而每一个需要\(dp\)的位置代表一个点,我们要从一个点转移过来,再从这个点转移出去,一进一出形成了一段弧线,我们要维护的就是这个弧线的形态。更加详细的可以参考这里。
因为我们的操作如此,所以我们把每次移动所跨越的区间做一个覆盖,不难发现要么被覆盖\(1\)次,要么被覆盖\(3\)次,以及一段后缀可能覆盖\(0\)次。
我们提前把\(e\)给删掉,这样子剩下的位置只有两种,一种是关键点,即某个\(e\)连续段后的第一个非\(e\)字符所在的位置。另外一种不是关键点,并且关键点之间不可能相邻
我们考虑记录这个状态,设\(f[i][j]\)表示当前在\(i\)位置,并且\(i,i+1\)之间的这条线段被覆盖的次数为\(1\)次的接下来要跳到\(j\)字母的最小代价。设\(g[i][j][k]\)表示当前在\(i\)位置,\(i,i+1\)要覆盖三次,因为被覆盖三次所以会有两次向后跳的操作,第一次跳到了\(j\)字符,第二次跳到了\(k\)字符的最小代价。注意到这个状态中,并不代表着是从\(i\)位置往后跳\(j\),而是从\(i\)位置之前的某个位置到达\(i\)之后\(j\)字符的最小代价。
首先考虑\(f[i][j]\)的转移:
- 如果\(i\)位置不是\(e\),并且\(s[i]\neq j\)那么可以从\(f[i-1][j]\)转移过来,显然不需要额外代价。
- 然后可以从\(f[i-1][s[i]]\)转移到\(f[i][j]\),然后这里要进行一次\(f\)操作,而\(f\)后面还需要再跟上一个字符,所以代价为\(2\)。
接下来把\(g[i][j][k]\)也丢进来转移。
- 首先\(g[i][s[i]][k]\)等价于\(f[i][k]\),所以\(f[i][j]\)可以从\(g[i][s[i]][k]\)转移过来,不需要代价。
- 接下来\(g[i][s[i]][s[i]]\)跳完之后还是在自己这个位置,所以\(f[i][j]\)可以由\(g[i][s[i]][s[i]]\)转移过来,代价为\(2\)。
然后考虑\(g\)怎么转移,先考虑\(g\)从\(f\)的转移
- 首先\(g[i][j][k]\)可以认为我们先走到\(j\)然后往回走一步使得\((i,i+1)\)被覆盖次数变成\(3\),然后再跳到\(k\),所以步数是\(f[i-1][k]+1+2\)
- 然后可以是先跳到\(i\)位置,再跳到\(j\)位置,再往回走,再跳到\(k\)位置,所以是\(g[i][j][k]\)可以由\(f[i-1][s[i]]+2+1+2\)
- 然后是我们可以从\(g[i-1][j][k]\)转移到\(g[i][j][k]\),代价是\(1\)。因为要补上\((i,i+1)\)要被覆盖三次的代价。
- 然后可以从\(g[i-1][j][s[i]]\)转移到\(g[i][j][k]\)代价是\(3\)。
- 然后\(g[i-1][s[i]][k]\)转移到\(g[i][j][k]\),代价是\(3\)。
- \(g[i-1][s[i]][s[i]]\)转移到\(g[i][j][k]\),代价是\(5\)。
最后几个为啥是对的就和上面类似的分析就好了。
可以参考Itst博客的图
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAX 77777
int n,cnt,a[MAX],f[MAX][11],g[MAX][11][11];
char s[MAX];bool book[MAX];
void cmin(int &x,int y){x=x>y?y:x;}
int main()
{
scanf("%d%s",&n,s+1);
for(int i=1;i<=n;++i)a[i]=s[i]-97;
for(int i=2;i<=n;++i)
if(a[i]==4)++cnt;
else if(a[i-1]==4)book[i]=true;
memset(f,63,sizeof(f));memset(g,63,sizeof(g));
f[0][a[1]]=0;
for(int i=1;i<=n;++i)
{
if(a[i]==4)
{
for(int j=0;j<11;++j)f[i][j]=f[i-1][j];
for(int j=0;j<11;++j)
for(int k=0;k<11;++k)
g[i][j][k]=g[i-1][j][k];
continue;
}
for(int j=0;j<11;++j)
{
if(j!=a[i]&&!book[i])cmin(f[i][j],f[i-1][j]);
cmin(f[i][j],f[i-1][a[i]]+2);
if(j!=a[i])cmin(f[i][j],g[i-1][a[i]][j]);
cmin(f[i][j],g[i-1][a[i]][a[i]]+2);
for(int k=0;k<11;++k)
{
if(j!=a[i])cmin(g[i][j][k],f[i-1][j]+3);
cmin(g[i][j][k],f[i-1][a[i]]+5);
if(j!=a[i]&&k!=a[i])cmin(g[i][j][k],g[i-1][j][k]+1);
if(j!=a[i])cmin(g[i][j][k],g[i-1][j][a[i]]+3);
if(k!=a[i])cmin(g[i][j][k],g[i-1][a[i]][k]+3);
cmin(g[i][j][k],g[i-1][a[i]][a[i]]+5);
}
}
}
printf("%d\n",f[n][10]+cnt*2-2);
return 0;
}
【LOJ#2687】Vim(动态规划)的更多相关文章
- 【LOJ#2542】[PKUWC2018]随机游走(min-max容斥,动态规划)
[LOJ#2542][PKUWC2018]随机游走(min-max容斥,动态规划) 题面 LOJ 题解 很明显,要求的东西可以很容易的进行\(min-max\)容斥,那么转为求集合的\(min\). ...
- 【LOJ#6074】子序列(动态规划)
[LOJ#6074]子序列(动态规划) 题面 LOJ 题解 考虑一个暴力\(dp\). 设\(f[i][c]\)表示当前在第\(i\)位,并且以\(c\)结尾的子序列个数. 那么假设当前位为\(a\) ...
- 【LOJ#575】【LNR#2】不等关系(容斥,动态规划,分治FFT)
[LOJ#575][LNR#2]不等关系(容斥,动态规划,分治FFT) 题面 LOJ 题解 一个暴力\(dp\),设\(f[i][j]\)表示考虑完了前\(i\)个位置,其中最后一个数在前面所有数中排 ...
- loj 6037 「雅礼集训 2017 Day4」猜数列 - 动态规划
题目传送门 传送门 题目大意 有一个位置数列,给定$n$条线索,每条线索从某一个位置开始,一直向左或者向右走,每遇到一个还没有在线索中出现的数就将它加入线索,问最小的可能的数列长度. 依次从左到右考虑 ...
- 【动态规划】loj#2485. 「CEOI2017」Chase
有意思的可做dp题:细节有点多,值得多想想 题目描述 在逃亡者的面前有一个迷宫,这个迷宫由 nnn 个房间和 n−1n-1n−1 条双向走廊构成,每条走廊会链接不同的两个房间,所有的房间都可以通过走廊 ...
- loj 2955 「NOIP2018」保卫王国 - 树链剖分 - 动态规划
题目传送门 传送门 想抄一个短一点ddp板子.然后照着Jode抄,莫名其妙多了90行和1.3k. Code /** * loj * Problem#2955 * Accepted * Time: 26 ...
- 【BZOJ5471】[FJOI2018]邮递员问题(动态规划)
[BZOJ5471][FJOI2018]邮递员问题(动态规划) 题面 BZOJ 洛谷 给定平面上若干个点,保证这些点在两条平行线上,给定起点终点,求从起点出发,遍历所有点后到达终点的最短路径长度. 题 ...
- 【BZOJ5211】[ZJOI2018]线图(树哈希,动态规划)
[BZOJ5211][ZJOI2018]线图(树哈希,动态规划) 题面 BZOJ 洛谷 题解 吉老师的题目是真的神仙啊. 去年去现场这题似乎骗了\(20\)分就滚粗了? 首先\(k=2\)直接算\(k ...
- 【LOJ6089】小Y的背包计数问题(动态规划)
[LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...
随机推荐
- jQuery入门和DOM对象
jQuery入门和DOM对象 1.开发准备 1. 下载的版本: jquery-3.3.1.min.js :压缩版,发布版84.8KB jquery-3.3.1.js :常规版,开发版265KB 2. ...
- java之对象创建时各成员变量的初始值
除了byte short int long float double char bollean这基础类型外,其余的都是引用类型 成员变量类型 初始值 byte 0 short 0 int 0 long ...
- java spring是元编程框架---使用的机制是注解+配置
java spring是元编程框架---使用的机制是注解+配置
- 常用类-excel转csv
public class ExcelFileHelper { public static bool SaveAsCsv(string excelFilePath, string destination ...
- 常用类-CSV---OLEDB
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.D ...
- Servlet小结(面试)
1.doGet()和doPost()区别/get和post请求方法区别: (1)在form表单中:method = “get/post”相对应doGet和doPost方法. (2)在http协议中: ...
- js随机生成ID
processID = () => { const uuid = 'xxxxxxxx-xxxx-xxxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function ...
- 在做nav-bar部分点击路由跳转相同地址时,控制台报错问题。
报错信息: Uncaught (in promise) NavigationDuplicated {_name: "NavigationDuplicated", name: &qu ...
- arcgis api for javascript 学习(三) 调用发布地图信息,并将地图属性信息输出到Excel表中
吐血推荐:网上搜了很久关于webgis地图属性表输出到Excel表,并没能找到相关有价值的信息,在小白面前,这就是一脸懵x啊!网上要么是关于前端如何在页面上直接导出excel,和webgis半毛钱关系 ...
- 【转载】Android绘图之Path总结
Path作为Android中一种相对复杂的绘图方式,官方文档中的有些解释并不是很好理解,这里作一个相对全面一些的总结,供日后查看,也分享给大家,共同进步. 1.基本绘图方法 addArc(RectF ...