P3694 邦邦的大合唱站队/签到题(状压dp)
P3694 邦邦的大合唱站队/签到题
题目背景
BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题。
题目描述
N个偶像排成一列,他们来自M个不同的乐队。每个团队至少有一个偶像。
现在要求重新安排队列,使来自同一乐队的偶像连续的站在一起。重新安排的办法是,让若干偶像出列(剩下的偶像不动),然后让出列的偶像一个个归队到原来的空位,归队的位置任意。
请问最少让多少偶像出列?
输入输出格式
输入格式:
第一行2个整数N,M。
接下来N个行,每行一个整数a_i(1\le a_i \le M)ai(1≤ai≤M),表示队列中第i个偶像的团队编号。
输出格式:
一个整数,表示答案
输入输出样例
12 4
1
3
2
4
2
1
2
3
1
1
3
4
7
说明
【样例解释】
1 3 √
3 3
2 3 √
4 4
2 4 √
1 2 √
2 2
3 2 √
1 1
1 1
3 1 √
4 1 √
【数据规模】
对于20%的数据,N\le 20, M=2N≤20,M=2
对于40%的数据,N\le 100, M\le 4N≤100,M≤4
对于70%的数据,N\le 2000, M\le 10N≤2000,M≤10
/*
状压dp
状态:dp[i]表示i状态下最小的出列(不一致)的个数。
比如dp[1101]表示从头到位为1/3/4乐队的偶像的最小出列个数。 预处理sum[i][j]表示前i个人中j种的数量
dp[i|(1<<j)]=min(dp[i|(1<<j)],dp[i]+(r-l-(sum[r][j]-sum[l][j])));
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm> #define inf 100000000
#define N 100007 using namespace std;
int n,m;
int a[N],dp[(<<)+],sum[N][]; int main()
{
scanf("%d%d",&n,&m);
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
a[i]--;
for(int j=; j<m; j++)
{
sum[i][j]=sum[i-][j];
if(j==a[i]) sum[i][j]++;
}
}
for(int i=; i<(<<m); i++) dp[i]=inf;
dp[]=;
for(int i=; i<(<<m); i++)
{
int Sum=;
for(int j=; j<m; j++)
if((<<j)&i) Sum+=sum[n][j];
for(int j=; j<m; j++)
{
if((<<j)&i) continue;
int num=sum[n][j];
int r=Sum+num;
int l=Sum;
dp[i|(<<j)]=min(dp[i|(<<j)],dp[i]+(r-l-(sum[r][j]-sum[l][j])));
}
}
printf("%d\n",dp[(<<m)-]);
return ;
}
对于全部数据,1\le N\le 10^5, M\le 201≤N≤105,M≤20
P3694 邦邦的大合唱站队/签到题(状压dp)的更多相关文章
- 【思维题 状压dp】APC001F - XOR Tree
可能算是道中规中矩的套路题吧…… Time limit : 2sec / Memory limit : 256MB Problem Statement You are given a tree wit ...
- 6.28 NOI模拟赛 好题 状压dp 随机化
算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...
- 洛谷P3694 邦邦的大合唱站队【状压dp】
状压dp 应用思想,找准状态,多考虑状态和\(f\)答案数组的维数(这个题主要就是找出来状态如何转移) 题目背景 \(BanG Dream!\)里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. ...
- P3694 邦邦的大合唱站队 (状压DP)
题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...
- Luogu P3694 邦邦的大合唱站队 【状压dp】By cellur925
题目传送门 最开始学状压的时候...学长就讲的是这个题.当时对于刚好像明白互不侵犯和炮兵阵地的我来说好像在听天书.......因为我当时心里想,这又不是什么棋盘,咋状压啊?!后来发现这样的状压多了去了 ...
- QDUOJ 来自xjy的签到题(bfs+状压dp)
来自xjy的签到题 Description 爱丽丝冒险来到了红皇后一个n*n大小的花园,每个格子由'.'或'#'表示,'.'表示爱丽丝可以到达这个格子,‘#’表示爱丽丝不能到达这个格子,爱丽丝每1 ...
- 刷题向》关于第一篇状压DP BZOJ1087 (EASY+)
这是本蒟蒻做的第一篇状压DP,有纪念意义. 这道题题目对状压DP十分友善,算是一道模板题. 分析题目,我们发现可以用0和1代表每一个格子的国王情况, 题目所说国王不能相邻放置,那么首先对于每一行是否合 ...
- 【bzoj1087】【互不侵犯King】状压dp裸题(浅尝ACM-D)
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=54329606 向大(hei)佬(e)势力学(di ...
- 刷题总结——bzoj1725(状压dp)
题目: 题目描述 Farmer John 新买了一块长方形的牧场,这块牧场被划分成 N 行 M 列(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地. FJ ...
随机推荐
- axios在vue项目中的一种封装方法
记录下之前领导封装的axios请求 npm install axios // 安装 单独写个文件配置axios,此处为request.js import axios from 'axios' //自定 ...
- 洛谷P1107 & BZOJ1270 [BJWC2008]雷涛的小猫
一道DP. 给你一个矩阵里面有很多数,你需要从上往下找到一种跳跃方法使得经过的点的价值之和最大. 具体题面见链接 洛谷P1107 BZOJ1270 很明显是一个二维的DP. #include<b ...
- python3.x Day1 用户登录程序练习
训练1: 模拟登陆: 1. 用户输入帐号密码进行登陆 2. 用户信息保存在文件内 3. 用户密码输入错误三次后锁定用户 login2.py: #!/usr/bin/env python # -*- c ...
- redis+php+mysql处理高并发实例
一.实验环境ubuntu.php.apache或nginx.mysql二.利用Redis锁解决高并发问题,需求现在有一个接口可能会出现并发量比较大的情况,这个接口使用php写的,做的功能是接收 用户的 ...
- LINUX-文件的权限 - 使用 "+" 设置权限,使用 "-" 用于取消
ls -lh 显示权限 ls /tmp | pr -T5 -W$COLUMNS 将终端划分成5栏显示 chmod ugo+rwx directory1 设置目录的所有人(u).群组(g)以及其他人(o ...
- 洛谷 1569 [USACO11FEB]属牛的抗议
[题解] 非常显然的DP,f[i]表示到第i个位置最多分成几组,f[i]=Max(f[i],f[j]+1) (j<i,sum[j]<=sum[i]) #include<cstdio& ...
- E - Cricket Field
Description Once upon a time there was a greedy King who ordered his chief Architect to build a fi ...
- 2.5.5 基本的 I/0 重定向
标准输入/输出(standard I/O)可能是软件设计原则里最重要的概念了.这个概念就是:程序应该有数据的来源端.数据的目的端以及报告问题的地方,它们分别被称为标准输入(standard i ...
- Python网络编程—socket(一)
从今天开始python基础就介绍完毕了,下面我们将进阶到socket网络编程的介绍,那么socket是什么呢?我们带着这个问题开始今天的介绍: 一.socket初探 socket通常也称作" ...
- springcloud(十一):熔断聚合监控Hystrix Turbine
springcloud(十一):熔断聚合监控Hystrix Turbine