P3694 邦邦的大合唱站队/签到题(状压dp)
P3694 邦邦的大合唱站队/签到题
题目背景
BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题。
题目描述
N个偶像排成一列,他们来自M个不同的乐队。每个团队至少有一个偶像。
现在要求重新安排队列,使来自同一乐队的偶像连续的站在一起。重新安排的办法是,让若干偶像出列(剩下的偶像不动),然后让出列的偶像一个个归队到原来的空位,归队的位置任意。
请问最少让多少偶像出列?
输入输出格式
输入格式:
第一行2个整数N,M。
接下来N个行,每行一个整数a_i(1\le a_i \le M)ai(1≤ai≤M),表示队列中第i个偶像的团队编号。
输出格式:
一个整数,表示答案
输入输出样例
12 4
1
3
2
4
2
1
2
3
1
1
3
4
7
说明
【样例解释】
1 3 √
3 3
2 3 √
4 4
2 4 √
1 2 √
2 2
3 2 √
1 1
1 1
3 1 √
4 1 √
【数据规模】
对于20%的数据,N\le 20, M=2N≤20,M=2
对于40%的数据,N\le 100, M\le 4N≤100,M≤4
对于70%的数据,N\le 2000, M\le 10N≤2000,M≤10
/*
状压dp
状态:dp[i]表示i状态下最小的出列(不一致)的个数。
比如dp[1101]表示从头到位为1/3/4乐队的偶像的最小出列个数。 预处理sum[i][j]表示前i个人中j种的数量
dp[i|(1<<j)]=min(dp[i|(1<<j)],dp[i]+(r-l-(sum[r][j]-sum[l][j])));
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm> #define inf 100000000
#define N 100007 using namespace std;
int n,m;
int a[N],dp[(<<)+],sum[N][]; int main()
{
scanf("%d%d",&n,&m);
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
a[i]--;
for(int j=; j<m; j++)
{
sum[i][j]=sum[i-][j];
if(j==a[i]) sum[i][j]++;
}
}
for(int i=; i<(<<m); i++) dp[i]=inf;
dp[]=;
for(int i=; i<(<<m); i++)
{
int Sum=;
for(int j=; j<m; j++)
if((<<j)&i) Sum+=sum[n][j];
for(int j=; j<m; j++)
{
if((<<j)&i) continue;
int num=sum[n][j];
int r=Sum+num;
int l=Sum;
dp[i|(<<j)]=min(dp[i|(<<j)],dp[i]+(r-l-(sum[r][j]-sum[l][j])));
}
}
printf("%d\n",dp[(<<m)-]);
return ;
}
对于全部数据,1\le N\le 10^5, M\le 201≤N≤105,M≤20
P3694 邦邦的大合唱站队/签到题(状压dp)的更多相关文章
- 【思维题 状压dp】APC001F - XOR Tree
可能算是道中规中矩的套路题吧…… Time limit : 2sec / Memory limit : 256MB Problem Statement You are given a tree wit ...
- 6.28 NOI模拟赛 好题 状压dp 随机化
算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...
- 洛谷P3694 邦邦的大合唱站队【状压dp】
状压dp 应用思想,找准状态,多考虑状态和\(f\)答案数组的维数(这个题主要就是找出来状态如何转移) 题目背景 \(BanG Dream!\)里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. ...
- P3694 邦邦的大合唱站队 (状压DP)
题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...
- Luogu P3694 邦邦的大合唱站队 【状压dp】By cellur925
题目传送门 最开始学状压的时候...学长就讲的是这个题.当时对于刚好像明白互不侵犯和炮兵阵地的我来说好像在听天书.......因为我当时心里想,这又不是什么棋盘,咋状压啊?!后来发现这样的状压多了去了 ...
- QDUOJ 来自xjy的签到题(bfs+状压dp)
来自xjy的签到题 Description 爱丽丝冒险来到了红皇后一个n*n大小的花园,每个格子由'.'或'#'表示,'.'表示爱丽丝可以到达这个格子,‘#’表示爱丽丝不能到达这个格子,爱丽丝每1 ...
- 刷题向》关于第一篇状压DP BZOJ1087 (EASY+)
这是本蒟蒻做的第一篇状压DP,有纪念意义. 这道题题目对状压DP十分友善,算是一道模板题. 分析题目,我们发现可以用0和1代表每一个格子的国王情况, 题目所说国王不能相邻放置,那么首先对于每一行是否合 ...
- 【bzoj1087】【互不侵犯King】状压dp裸题(浅尝ACM-D)
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=54329606 向大(hei)佬(e)势力学(di ...
- 刷题总结——bzoj1725(状压dp)
题目: 题目描述 Farmer John 新买了一块长方形的牧场,这块牧场被划分成 N 行 M 列(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地. FJ ...
随机推荐
- 小程序接口越过域名和https限制方法
都知道小程序上线接口需要域名,还需要https,就算是体验版的都是需要的,这样就筛选掉一大批开发者,像我这样只有学生轻量级服务器的学生要开发自己的小程序就很为难,但今天确惊奇的在小程序社区里面找到了用 ...
- 字符串系列——KMP模板整理
KMP模板整理 KMP与扩展KMP: /*vs 2017/ vs code以外编译器,去掉windows.h头文件和system("pause");*/ #include<i ...
- 洛谷——P4296 [AHOI2007]密码箱
P4296 [AHOI2007]密码箱 密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1. 求这个密码,$1<=n<=2,000,000,000$ 暴力枚举,数据有点儿水$O( ...
- Humidex POJ - 3299 (数学)
题目大意 给定你三个变量中的两个输出剩下的那一个 题解 没有什么,就是把公式推出来即可,完全的数学题 代码 #include <iostream> #include <cmath&g ...
- 第十节:Web爬虫之数据存储与MySQL8.0数据库安装和数据插入
用解析器解析出数据之后,接下来就是存储数据了,保存的形式可以多种多样,最简单的形式是直接保存为文本文件,如 TXT.JSON.csv 另外,还可以保存到数据库中,如关系型数据库MySQL ,非关系型数 ...
- Python基础—面向对象(初级篇)
一.什么是面向对象编程 面向对象编程(Object Oriented Programming,OOP,面向对象程序设计),python语言比较灵活即支持面向对象编程也支持面向函数式编程. 面向过程编程 ...
- Python基础(八)装饰器
今天我们来介绍一下可以提升python代码逼格的东西——装饰器.在学习装饰器之前我们先来复习一下函数的几个小点,方便更好的理解装饰器的含义. 一.知识点复习 1, 在函数中f1和f1()有什么不同,f ...
- Spring AOP 学习(五)
1. 使用动态代理实现AOP package com.atguigu.spring.aop; import java.lang.reflect.InvocationHandler; import ja ...
- Failed to load slave replication state from table mysql.gtid_slave_pos: 1146: Table 'mysql.gtid_slave_pos' doesn't exist
http://anothermysqldba.blogspot.com/2013/06/mariadb-1003-alpha-install-on-fedora-17.html MariaDB 10. ...
- 【转】建立一个更高级别的查询 API:正确使用Django ORM 的方式
这个就比较深入啦... http://www.oschina.net/translate/higher-level-query-api-django-orm 结论: 在视图和其他高级应用中使用源生的O ...