数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑
Description
大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一 大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。 R是一个质数。
Input
第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n
Output
共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值
Sample Input
4 2
Sample Output
1
数据范围:
对于100%的数据,1 < = N , M < = 10000000
#include <iostream>
#include <cstring>
#include <cstdio>
#include <bitset>
using namespace std;
const int N=;
int cnt,prime[N/];
int a1[N+],a2[N+],inv[N+];
bool check[N+];
void Shaker(){
for(int i=;i<=N;i++){
if(!check[i])
prime[++cnt]=i;
for(int j=;j<=cnt;j++){
if(i*prime[j]>N)break;
check[i*prime[j]]=true;
if(i%prime[j]==)break;
}
}
}
int main(){
int T,R,n,m;
scanf("%d%d",&T,&R);
Shaker();
inv[]=;
for(int i=;i<=N&&i<R;i++)
inv[i]=1ll*(R-R/i)*inv[R%i]%R;
a1[]=;
for(int i=;i<=N;i++)
a1[i]=1ll*a1[i-]*i%R;
a2[]=;
for(int i=;i<=N;i++)
if(check[i])a2[i]=a2[i-];
else a2[i]=1ll*a2[i-]*(i-)%R*inv[i%R]%R;
while(T--){
scanf("%d%d",&n,&m);
printf("%d\n",1ll*a1[n]*a2[m]%R);
}
return ;
}
数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑的更多相关文章
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- [BZOJ 2186] [Sdoi2008] 沙拉公主的困惑 【欧拉函数】
题目链接:BZOJ - 2186 题目分析 题目要求出 [1, n!] 中有多少数与 m! 互质.(m <= n) 那么在 [1, m!] 中有 phi(m!) 个数与 m! 互质,如果一个数 ...
- bzoj 2186 [Sdoi2008]沙拉公主的困惑(欧拉函数,逆元)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2186 [题意] 若干个询问,求1..n!中与m!互质的个数. [思路] 首先有gcd( ...
- BZOJ 2186 [Sdoi2008]沙拉公主的困惑 【逆元】
题意:求中互质的数的个数,其中. 分析:因为,所以,我们很容易知道如下结论 对于两个正整数和,如果是的倍数,那么中与互素的数的个数为 本结论是很好证明的,因为中与互素的个数为,又知道, ...
- [BZOJ 2186][Sdoi2008]沙拉公主的困惑(欧拉函数)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2186 分析: 就是要求1~n!中与m!互质的数的个数 首先m!以内的就是φ(m!) 关 ...
- bzoj 2186: [Sdoi2008]沙拉公主的困惑
#include<cstdio> #include<iostream> #define ll long long #define N 10000009 using namesp ...
- BZOJ 2186 SDOI2008 沙拉公主的困惑 数论
题目大意:给定询问组数T和取模数P,每次询问给定两个整数n和m,求1~(n!)的数中与m!互质的数个个数模P (m<=n) 首先T<=1W,暴力肯定过不去,我们须要预处理一些东西 首先我们 ...
- bzoj 2186 [Sdoi2008]沙拉公主的困惑 欧拉函数
n>=m,所以就变成了求 ϕ(m!)∗n!/m! 而 ϕ(m!)=m!∗(p−1)/p...... p为m!的素因子,即为m内的所有素数,问题就转化为了求 n!∗(p−1)/p...... 只需 ...
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
随机推荐
- PHP中的循环while、do...while、for、foreach四种循环。
php中的while循环,循环执行代码块制定的次数,或者当指定的条件为真时循环执行代码块. 在我们编写代码是时候,我们经常需要一块代码块重复执行多次.我们就可以使用while循环语句来完成这个任务. ...
- 'Service' object has no attribute 'process'
在使用selenium+phantomjs时,运行总是出现错误信息: 'Service' object has no attribute 'process' 出现该错误的原因是未能找到可执行程序&qu ...
- (转)resize扩展
jquery 默认的resize只能监听到浏览器窗口大小的改变,但我们在实际使用过程中有可能还需要监听某个div或其它标签的大小改变来执行相应的处理,如果使用默认的resize就无能为力了.怎么办呢, ...
- PHP 解决时差8小时的问题
有时候用php echo date("Y-m-d H:i:s")的时候会发现自己的时间和系统时间有差别 这里问题一般就是因为你自己的时区和配置的时区出现了差别的原因: 解决办法有三 ...
- IEqualityComparer 去重
1.去除list里某重复字段值的数据(相当于group by) public class CorrController { //方法 public void DoGet() { List<tes ...
- ORACLE解锁数据库用户
the account is locked解决办法: 1.进入sqlplus sqlplus "/as sysdba" 2.解锁: alter user hpmng account ...
- 学习java随笔第二篇:java开发工具——Eclipse
java开发工具有很多这里我使用的是Eclipse. 首先我在官网上下载了Eclipse的软件包,下载地址:http://www.eclipse.org/downloads/,然后有在网上找了一个汉化 ...
- PE File.
Figure 1 - PE File The CLR header stores information to indicate that the PE file is a .NET executab ...
- iOS中ARC内部原理
ARC会自动插入retain和release语句.ARC编译器有两部分,分别是前端编译器和优化器. 1. 前端编译器 前端编译器会为“拥有的”每一个对象插入相应的release语句.如果对象的所有权修 ...
- UISearchBar 光标不出现的问题
app支持ios7,在UINavBar 里面加入搜索框,结果光标一直出现不了. 解决办法如下: searchBar.tintColor = [UIColor blueColor];