代码实现:

 # -*- coding: utf-8 -*-
"""
Created on Mon Jul 16 09:08:09 2018 @author: zhen
""" from sklearn.linear_model import LinearRegression, Ridge, Lasso
import mglearn
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
# 线性回归
x, y = mglearn.datasets.load_extended_boston()
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0) linear_reg = LinearRegression()
lr = linear_reg.fit(x_train, y_train) print("lr.coef_:{}".format(lr.coef_)) # 斜率
print("lr.intercept_:{}".format(lr.intercept_)) # 截距 print("="*25+"线性回归"+"="*25)
print("Training set score:{:.2f}".format(lr.score(x_train, y_train)))
print("Rest set score:{:.2f}".format(lr.score(x_test, y_test))) """
总结:
训练集和测试集上的分数非常接近,这说明可能存在欠耦合。
训练集和测试集之间的显著性能差异是过拟合的明显标志。解决方式是使用岭回归!
"""
print("="*25+"岭回归(默认值1.0)"+"="*25)
# 岭回归
ridge = Ridge().fit(x_train, y_train) print("Training set score:{:.2f}".format(ridge.score(x_train, y_train)))
print("Test set score:{:.2f}".format(ridge.score(x_test, y_test))) print("="*25+"岭回归(alpha=10)"+"="*25)
# 岭回归
ridge_10 = Ridge(alpha=10).fit(x_train, y_train) print("Training set score:{:.2f}".format(ridge_10.score(x_train, y_train)))
print("Test set score:{:.2f}".format(ridge_10.score(x_test, y_test))) print("="*25+"岭回归(alpha=0.1)"+"="*25)
# 岭回归
ridge_01 = Ridge(alpha=0.1).fit(x_train, y_train) print("Training set score:{:.2f}".format(ridge_01.score(x_train, y_train)))
print("Test set score:{:.2f}".format(ridge_01.score(x_test, y_test))) # 可视化
fig = plt.figure(10)
plt.subplots_adjust(wspace =0, hspace =0.6)#调整子图间距
ax1 = plt.subplot(2, 1, 1) ax2 = plt.subplot(2, 1, 2) ax1.plot(ridge_01.coef_, 'v', label="Ridge alpha=0.1")
ax1.plot(ridge.coef_, 's', label="Ridge alpha=1")
ax1.plot(ridge_10.coef_, '^', label="Ridge alpha=10") ax1.plot(lr.coef_, 'o', label="LinearRegression") ax1.set_ylabel("Cofficient magnitude")
ax1.set_ylim(-25,25)
ax1.hlines(0, 0, len(lr.coef_))
ax1.legend(ncol=2, loc=(0.1, 1.05)) print("="*25+"Lasso回归(默认配置)"+"="*25)
lasso = Lasso().fit(x_train, y_train) print("Training set score:{:.2f}".format(lasso.score(x_train, y_train)))
print("Test set score:{:.2f}".format(lasso.score(x_test, y_test)))
print("Number of features used:{}".format(np.sum(lasso.coef_ != 0))) print("="*25+"Lasso回归(aplpha=0.01)"+"="*25)
lasso_001 = Lasso(alpha=0.01, max_iter=1000).fit(x_train, y_train) print("Training set score:{:.2f}".format(lasso_001.score(x_train, y_train)))
print("Test set score:{:.2f}".format(lasso_001.score(x_test, y_test)))
print("Number of features used:{}".format(np.sum(lasso_001.coef_ != 0))) print("="*15+"Lasso回归(aplpha=0.0001)太小可能会过拟合"+"="*15)
lasso_00001 = Lasso(alpha=0.0001, max_iter=1000).fit(x_train, y_train) print("Training set score:{:.2f}".format(lasso_00001.score(x_train, y_train)))
print("Test set score:{:.2f}".format(lasso_00001.score(x_test, y_test)))
print("Number of features used:{}".format(np.sum(lasso_00001.coef_ != 0))) # 可视化
ax2.plot(ridge_01.coef_, 'o', label="Ridge alpha=0.1")
ax2.plot(lasso.coef_, 's', label="lasso alpha=1")
ax2.plot(lasso_001.coef_, '^', label="lasso alpha=0.001")
ax2.plot(lasso_00001.coef_, 'v', label="lasso alpha=0.00001") ax2.set_ylabel("Cofficient magnitude")
ax2.set_xlabel("Coefficient index")
ax2.set_ylim(-25,25)
ax2.legend(ncol=2, loc=(0.1, 1))

结果:

总结:各回归算法在相同的测试数据中表现差距很多,且算法内的配置参数调整对自身算法的效果影响也是巨大的,

  因此合理挑选合适的算法和配置合适的配置参数是使用算法的关键!

回归算法比较(线性回归,Ridge回归,Lasso回归)的更多相关文章

  1. 线性回归大结局(岭(Ridge)、 Lasso回归原理、公式推导),你想要的这里都有

    本文已参与「新人创作礼」活动,一起开启掘金创作之路. 线性模型简介 所谓线性模型就是通过数据的线性组合来拟合一个数据,比如对于一个数据 \(X\) \[X = (x_1, x_2, x_3, ..., ...

  2. Lasso回归算法: 坐标轴下降法与最小角回归法小结

    前面的文章对线性回归做了一个小结,文章在这: 线性回归原理小结.里面对线程回归的正则化也做了一个初步的介绍.提到了线程回归的L2正则化-Ridge回归,以及线程回归的L1正则化-Lasso回归.但是对 ...

  3. 多元线性回归模型的特征压缩:岭回归和Lasso回归

    多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数 ...

  4. SparkMLlib学习分类算法之逻辑回归算法

    SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693 ...

  5. SparkMLlib分类算法之逻辑回归算法

    SparkMLlib分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/5169383 ...

  6. LASSO回归与L1正则化 西瓜书

    LASSO回归与L1正则化 西瓜书 2018年04月23日 19:29:57 BIT_666 阅读数 2968更多 分类专栏: 机器学习 机器学习数学原理 西瓜书   版权声明:本文为博主原创文章,遵 ...

  7. 线性回归——lasso回归和岭回归(ridge regression)

    目录 线性回归--最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean squ ...

  8. Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS

    Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...

  9. 【机器学习】正则化的线性回归 —— 岭回归与Lasso回归

    注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念 ...

随机推荐

  1. LeetCode重建二叉树系列问题总结

    二叉树天然的递归特性,使得我们可以使用递归算法对二叉树进行遍历和重建.之前已经写过LeetCode二叉树的前序.中序.后序遍历(递归实现),那么本文将进行二叉树的重建,经过对比,会发现二者有着许多相似 ...

  2. api接口参数问题

    对于取数据,我们使用最多的应该就是get请求了吧.下面通过几个示例看看我们的get请求参数传递. 回到顶部 1.基础类型参数 [HttpGet] public string GetAllChargin ...

  3. jQuery中对未来的元素绑定事件用 on

    最近项目需要点击弹窗里面的a标签出现外连接跳转提示 <a href="javascript:void(0);" target="_blank" id=&q ...

  4. SAP HUM事务代码 HUMAT 之初探

    SAP HUM事务代码 HUMAT 之初探 SAP菜单中,该事务代码在这里: 1)如下的inbound delivery号码, Document flow, 已经完成了PGR, 2)执行HUMAT,进 ...

  5. 002-如何理解Java的平台独立性

    本文首发于公众号:javaadu Java有句非常有名的口号--"一次编写,到处运行",依靠的就是JVM提供的平台独立性,本质上来讲,就是通过虚拟机技术,通过限制一些功能,达到屏蔽 ...

  6. CentOS_关机与重启命令详解

    Linux centos关机与重启命令详解 Linux centos重启命令: 1.reboot 2.shutdown -r now 立刻重启(root用户使用) 3.shutdown -r 10 过 ...

  7. Visual Studio Code快速删除空行及几个常用快捷键总结

    在使用notepad++工具的时候,很多情况下我们会遇到批量替换空行的操作,之前的操作方法是快捷键Crtl+h调出窗口选择替换栏,在查找目标栏中输入\r\n\r\n,替换为 栏中输入\r\n并选择全部 ...

  8. x宝23大洋包邮的老式大朝华MP3播放器简单评测

    (纯兴趣测评,非广告) 最近逛X宝,看到了这个古董级MP3播放器居然还在售,于是脑抽+情怀泛滥买了一个. 然后呢,从遥远的深圳跨越好几千公里邮过来了这个玩意: 那节南孚5号电池是我自己的,是为了对比一 ...

  9. IIS Express 配置缓存位置

    Please refer to the three configure files to check if they contains the rule setting. "%Program ...

  10. Math类中round、ceil和floor方法的功能

    Java中的Math工具类用来完成除+.-.*./.%等基本运算以外的复杂运算,位于java.lang包下,Math类的构造器全是私有的(private),因此无法创建Math类的对象,Math类的方 ...