回归算法比较(线性回归,Ridge回归,Lasso回归)
代码实现:
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 16 09:08:09 2018 @author: zhen
""" from sklearn.linear_model import LinearRegression, Ridge, Lasso
import mglearn
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
# 线性回归
x, y = mglearn.datasets.load_extended_boston()
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0) linear_reg = LinearRegression()
lr = linear_reg.fit(x_train, y_train) print("lr.coef_:{}".format(lr.coef_)) # 斜率
print("lr.intercept_:{}".format(lr.intercept_)) # 截距 print("="*25+"线性回归"+"="*25)
print("Training set score:{:.2f}".format(lr.score(x_train, y_train)))
print("Rest set score:{:.2f}".format(lr.score(x_test, y_test))) """
总结:
训练集和测试集上的分数非常接近,这说明可能存在欠耦合。
训练集和测试集之间的显著性能差异是过拟合的明显标志。解决方式是使用岭回归!
"""
print("="*25+"岭回归(默认值1.0)"+"="*25)
# 岭回归
ridge = Ridge().fit(x_train, y_train) print("Training set score:{:.2f}".format(ridge.score(x_train, y_train)))
print("Test set score:{:.2f}".format(ridge.score(x_test, y_test))) print("="*25+"岭回归(alpha=10)"+"="*25)
# 岭回归
ridge_10 = Ridge(alpha=10).fit(x_train, y_train) print("Training set score:{:.2f}".format(ridge_10.score(x_train, y_train)))
print("Test set score:{:.2f}".format(ridge_10.score(x_test, y_test))) print("="*25+"岭回归(alpha=0.1)"+"="*25)
# 岭回归
ridge_01 = Ridge(alpha=0.1).fit(x_train, y_train) print("Training set score:{:.2f}".format(ridge_01.score(x_train, y_train)))
print("Test set score:{:.2f}".format(ridge_01.score(x_test, y_test))) # 可视化
fig = plt.figure(10)
plt.subplots_adjust(wspace =0, hspace =0.6)#调整子图间距
ax1 = plt.subplot(2, 1, 1) ax2 = plt.subplot(2, 1, 2) ax1.plot(ridge_01.coef_, 'v', label="Ridge alpha=0.1")
ax1.plot(ridge.coef_, 's', label="Ridge alpha=1")
ax1.plot(ridge_10.coef_, '^', label="Ridge alpha=10") ax1.plot(lr.coef_, 'o', label="LinearRegression") ax1.set_ylabel("Cofficient magnitude")
ax1.set_ylim(-25,25)
ax1.hlines(0, 0, len(lr.coef_))
ax1.legend(ncol=2, loc=(0.1, 1.05)) print("="*25+"Lasso回归(默认配置)"+"="*25)
lasso = Lasso().fit(x_train, y_train) print("Training set score:{:.2f}".format(lasso.score(x_train, y_train)))
print("Test set score:{:.2f}".format(lasso.score(x_test, y_test)))
print("Number of features used:{}".format(np.sum(lasso.coef_ != 0))) print("="*25+"Lasso回归(aplpha=0.01)"+"="*25)
lasso_001 = Lasso(alpha=0.01, max_iter=1000).fit(x_train, y_train) print("Training set score:{:.2f}".format(lasso_001.score(x_train, y_train)))
print("Test set score:{:.2f}".format(lasso_001.score(x_test, y_test)))
print("Number of features used:{}".format(np.sum(lasso_001.coef_ != 0))) print("="*15+"Lasso回归(aplpha=0.0001)太小可能会过拟合"+"="*15)
lasso_00001 = Lasso(alpha=0.0001, max_iter=1000).fit(x_train, y_train) print("Training set score:{:.2f}".format(lasso_00001.score(x_train, y_train)))
print("Test set score:{:.2f}".format(lasso_00001.score(x_test, y_test)))
print("Number of features used:{}".format(np.sum(lasso_00001.coef_ != 0))) # 可视化
ax2.plot(ridge_01.coef_, 'o', label="Ridge alpha=0.1")
ax2.plot(lasso.coef_, 's', label="lasso alpha=1")
ax2.plot(lasso_001.coef_, '^', label="lasso alpha=0.001")
ax2.plot(lasso_00001.coef_, 'v', label="lasso alpha=0.00001") ax2.set_ylabel("Cofficient magnitude")
ax2.set_xlabel("Coefficient index")
ax2.set_ylim(-25,25)
ax2.legend(ncol=2, loc=(0.1, 1))
结果:



总结:各回归算法在相同的测试数据中表现差距很多,且算法内的配置参数调整对自身算法的效果影响也是巨大的,
因此合理挑选合适的算法和配置合适的配置参数是使用算法的关键!
回归算法比较(线性回归,Ridge回归,Lasso回归)的更多相关文章
- 线性回归大结局(岭(Ridge)、 Lasso回归原理、公式推导),你想要的这里都有
本文已参与「新人创作礼」活动,一起开启掘金创作之路. 线性模型简介 所谓线性模型就是通过数据的线性组合来拟合一个数据,比如对于一个数据 \(X\) \[X = (x_1, x_2, x_3, ..., ...
- Lasso回归算法: 坐标轴下降法与最小角回归法小结
前面的文章对线性回归做了一个小结,文章在这: 线性回归原理小结.里面对线程回归的正则化也做了一个初步的介绍.提到了线程回归的L2正则化-Ridge回归,以及线程回归的L1正则化-Lasso回归.但是对 ...
- 多元线性回归模型的特征压缩:岭回归和Lasso回归
多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数 ...
- SparkMLlib学习分类算法之逻辑回归算法
SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693 ...
- SparkMLlib分类算法之逻辑回归算法
SparkMLlib分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/5169383 ...
- LASSO回归与L1正则化 西瓜书
LASSO回归与L1正则化 西瓜书 2018年04月23日 19:29:57 BIT_666 阅读数 2968更多 分类专栏: 机器学习 机器学习数学原理 西瓜书 版权声明:本文为博主原创文章,遵 ...
- 线性回归——lasso回归和岭回归(ridge regression)
目录 线性回归--最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean squ ...
- Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS
Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...
- 【机器学习】正则化的线性回归 —— 岭回归与Lasso回归
注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念 ...
随机推荐
- .NET Core:依赖注入
在Startup的ConfigureServices方法中加入需要依赖注入的东西. 每次从容器 中获取的时候都是一个新的实例:services.AddTransient<ITransient ...
- NET微信公众号开发环境搭建(一)-了解微信由来
公众号的应用,开发及调试环境搭建 花生壳要注册 需要二十多块钱 ,还要实名认证,估计要一两天才能审核通过 主要就是在 windows搭建测试环境 1.微信的应用场景 360百科微信简介 ht ...
- 高淇java300集异常机制作业
1.以下关于异常的代码的执行结果是(C ).(选择一项) 1 2 3 4 5 6 7 8 9 10 11 12 public class Test { public static void m ...
- Rest_framework Router 路由器(含SimplyRouter源码浅解)
目录 Rest_framework Router 路由器 ViewSet结合Router,自动生成url. 将ViewSet注册到Router中,需要三个要素: 关于路由规则,细分有四类: rest_ ...
- Mapbox使用详解
一.简介: Mapbox致力于打造全球最漂亮的个性化地图. 在一次偶然的地图相关资料搜索过程中发现了一个很神奇又很漂亮的地图,这个地图支持高度自定义各种地图元素,比如,道路,水系,绿地,建筑物,背 ...
- sqlserver—数据完整性(理论篇)
数据完整性主要指的是数据的精确性和可靠性,目的就是为了防止数据库中存放的数值,以及字符具有合法性(即按照管理员定义的规则进行存放) 分为以下四类: 实体完整性 实体完整性要求每一个表中的主键字段都不能 ...
- 【RL-TCPnet网络教程】第39章 RL-TCPnet之TFTP服务器
第39章 RL-TCPnet之TFTP服务器 本章节为大家讲解RL-TCPnet的TFTP服务器应用,学习本章节前,务必要优先学习第38章的TFTP基础知识.有了这些基础知识之后,再搞本章节会 ...
- LeetCode算法题-Robot Return to Origin(Java实现)
这是悦乐书的第281次更新,第298篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第149题(顺位题号是657).在2D平面上有一个从位置(0,0)开始的机器人.给定其移 ...
- 从壹开始前后端分离【 .NET Core2.0 +Vue2.0 】框架之十二 || 三种跨域方式比较,DTOs(数据传输对象)初探
更新反馈 1.博友@落幕残情童鞋说到了,Nginx反向代理实现跨域,因为我目前还没有使用到,给忽略了,这次记录下,为下次补充.此坑已填 2.提示:跨域的姊妹篇——<三十三║ ⅖ 种方法实现完美跨 ...
- Linux+.Net Core+Nginx(在Linux上使用Nginx反向代理.Net Core 项目)
Linux+.Net Core+Nginx 之前的文章中有提到关于使用Nginx在linux来实现反向代理,今天我们继续加点料.在Centos7中部署.NetCore,然后使用Nginx进行反向代理! ...