【BZOJ3451】Normal

Description

某天WJMZBMR学习了一个神奇的算法:树的点分治!

这个算法的核心是这样的:

消耗时间=0

Solve(树 a)

消耗时间 += a 的 大小

如果 a 中 只有 1 个点

退出

否则在a中选一个点x,在a中删除点x

那么a变成了几个小一点的树,对每个小树递归调用Solve

我们注意到的这个算法的时间复杂度跟选择的点x是密切相关的。

如果x是树的重心,那么时间复杂度就是O(nlogn)

但是由于WJMZBMR比较傻逼,他决定随机在a中选择一个点作为x!

Sevenkplus告诉他这样做的最坏复杂度是O(n^2)

但是WJMZBMR就是不信>_<。。。

于是Sevenkplus花了几分钟写了一个程序证明了这一点。。。你也试试看吧_

现在给你一颗树,你能告诉WJMZBMR他的傻逼算法需要的期望消耗时间吗?(消耗时间按在Solve里面的那个为标准)

Input

第一行一个整数n,表示树的大小

接下来n-1行每行两个数a,b,表示a和b之间有一条边

注意点是从0开始标号的

Output

一行一个浮点数表示答案

四舍五入到小数点后4位

如果害怕精度跪建议用long double或者extended

Sample Input

3

0 1

1 2

Sample Output

5.6667

题目大意就是给定一棵树,问随机进行点分治(不一定找重心)每个节点期望访问次数之和。

神题啊。

我们考虑计算点对\(P_{x,y}\)表示在\(x\)最为点分重心的时候访问了\(y\)的概率,由期望的线性性得出\(ans=\sum_{x=1}^n\sum_{y=1}^n P_{x,y}\)。

然后我们考虑怎么求这个\(P_{x,y}\)。假设\(x\)到\(y\)最短路上有\(ver_{x,y}\)个点,那么概率就是\(\frac{1}{ver_{x,y}}\)。

为什么呢?我们可以考虑将点分看成一个删点的操作。我们必须保证在删除\(x\)之前\(x\)到\(y\)的路径都是未被删除的。我们假设可以重复删除以删除的点,则:

\[\displaystyle
\begin{align}
P_{x,y}&=\sum_{i=0}^{\infty}(\frac{n-ver_{x,y}}{n})^i\frac{1}{n}\\
&
=\frac{1}{1-\frac{n-ver_{x,y}}{n}}\frac{1}{n}\\
&=\frac{1}{ver_{x,y}}
\end{align}
\]

这个公式的意义就是考虑在删除\(x\)之前删除了多少次其他点。

所以我们要求的就是\(ans=ans=\sum_{x=1}^n\sum_{y=1}^n \frac{1}{ver_{x,y}}\)

因为这个公式是非线性的,所以我们对于每个\(k\)要求出\([ver_{x,y}==k]\)的数量。这个我们就可以考虑点分治了。

#include<bits/stdc++.h>
#define ll long long
#define N 30005 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int n;
struct Com {
long double r,v;
Com() {r=v=0;}
Com(double a,double b) {r=a,v=b;}
};
Com operator +(const Com &a,const Com &b) {return Com(a.r+b.r,a.v+b.v);}
Com operator -(const Com &a,const Com &b) {return Com(a.r-b.r,a.v-b.v);}
Com operator *(const Com &a,const Com &b) {return Com(a.r*b.r-a.v*b.v,a.r*b.v+a.v*b.r);}
Com operator /(const Com &a,const long double b) {return Com(a.r/b,a.v/b);}
const double pi=acos(-1);
void FFT(Com *a,int d,int flag) {
int n=1<<d;
static int rev[N<<2];
for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<d-1);
for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int s=1;s<=d;s++) {
int len=1<<s,mid=len>>1;
Com w(cos(2*flag*pi/len),sin(2*flag*pi/len));
for(int i=0;i<n;i+=len) {
Com t(1,0);
for(int j=0;j<mid;j++,t=t*w) {
Com u=a[i+j],v=a[i+j+mid]*t;
a[i+j]=u+v;
a[i+j+mid]=u-v;
}
}
}
if(flag==-1) for(int i=0;i<n;i++) a[i]=a[i]/n;
} struct road {
int to,nxt;
}s[N<<1];
int h[N],cnt;
void add(int i,int j) {s[++cnt]=(road) {j,h[i]};h[i]=cnt;}
int size[N],mx[N],sum,rt;
int fr[N];
bool vis[N]; void Get_root(int v,int fr) {
mx[v]=size[v]=1;
::fr[v]=fr;
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fr||vis[to]) continue ;
Get_root(to,v);
size[v]+=size[to];
mx[v]=max(mx[v],size[to]);
}
mx[v]=max(mx[v],sum-size[v]);
if(mx[rt]>mx[v]) rt=v;
} int ans[N];
int tem[N];
int mxdep; void statis(int v,int fr,int dep) {
tem[dep]++;
mxdep=max(mxdep,dep);
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fr||vis[to]) continue ;
statis(to,v,dep+1);
}
} Com A[N<<2];
void cal(int flag) {
int d=ceil(log2(mxdep<<1|1));
for(int i=0;i<1<<d;i++) A[i]=Com(tem[i],0);
FFT(A,d,1);
for(int i=0;i<1<<d;i++) A[i]=A[i]*A[i];
FFT(A,d,-1);
for(int i=0;i<1<<d;i++) {
ans[i+1]+=flag*(int(A[i].r+0.5));
}
} void solve(int v) {
vis[v]=1;
if(fr[v]) size[fr[v]]=sum-size[v];
mxdep=0;
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(vis[to]) continue ;
statis(to,v,1);
}
ans[1]++;
for(int i=1;i<=mxdep;i++) ans[i+1]+=tem[i]*2;
cal(1);
for(int i=1;i<=mxdep;i++) tem[i]=0;
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(vis[to]) continue ;
mxdep=0;
statis(to,v,1);
cal(-1);
for(int j=1;j<=mxdep;j++) tem[j]=0;
sum=size[to];
rt=0;
Get_root(to,v);
solve(rt);
}
} int main() {
mx[0]=1e9;
n=Get();
int a,b;
for(int i=1;i<n;i++) {
a=Get()+1,b=Get()+1;
add(a,b),add(b,a);
}
sum=n;
Get_root(1,0);
solve(rt);
long double Ans=0;
for(int i=1;i<=n;i++) {
Ans+=1.0*ans[i]/(1.0*i);
}
cout<<fixed<<setprecision(4)<<Ans;
return 0;
}

【BZOJ3451】Normal的更多相关文章

  1. 【BZOJ3451】Normal (点分治)

    [BZOJ3451]Normal (点分治) 题面 BZOJ 题解 显然考虑每个点的贡献.但是发现似乎怎么算都不好计算其在点分树上的深度. 那么考虑一下这个点在点分树中每一次被计算的情况,显然就是其在 ...

  2. 【BZOJ3451】Tyvj1953 Normal 点分治+FFT+期望

    [BZOJ3451]Tyvj1953 Normal Description 某天WJMZBMR学习了一个神奇的算法:树的点分治!这个算法的核心是这样的:消耗时间=0Solve(树 a) 消耗时间 += ...

  3. 【bzoj3451】Tyvj1953 Normal 期望+树的点分治+FFT

    题目描述 给你一棵 $n$ 个点的树,对这棵树进行随机点分治,每次随机一个点作为分治中心.定义消耗时间为每层分治的子树大小之和,求消耗时间的期望. 输入 第一行一个整数n,表示树的大小接下来n-1行每 ...

  4. 【BZOJ3451】Tyvj1953 Normal - 点分治+FFT

    题目来源:NOI2019模拟测试赛(七) 非原题面,题意有略微区别 题意: 吐槽: 心态崩了. 好不容易场上想出一题正解,写了三个小时结果写了个假的点分治,卡成$O(n^2)$ 我退役吧. 题解: 原 ...

  5. 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归

    Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...

  6. 【概率论】5-10:二维正态分布(The Bivariate Normal Distributions)

    title: [概率论]5-10:二维正态分布(The Bivariate Normal Distributions) categories: - Mathematic - Probability k ...

  7. 【概率论】5-6:正态分布(The Normal Distributions Part III)

    title: [概率论]5-6:正态分布(The Normal Distributions Part III) categories: - Mathematic - Probability keywo ...

  8. 【概率论】5-6:正态分布(The Normal Distributions Part II)

    title: [概率论]5-6:正态分布(The Normal Distributions Part II) categories: - Mathematic - Probability keywor ...

  9. 【概率论】5-6:正态分布(The Normal Distributions Part I)

    title: [概率论]5-6:正态分布(The Normal Distributions Part I) categories: - Mathematic - Probability keyword ...

随机推荐

  1. win10下安装PHP_CodeSniffer 检查编码规范

    PHP CodeSniffer是PEAR中的一个用PHP5写的一个PHP的代码风格检测器,它根据预先设定好的PHP编码风格和规则,去检查应用中的代码风格情况是否有违反一组预先设置好的编码标准,内置了Z ...

  2. vue2 切换路由时 页面滚动到顶部 用游览器返回时 记住上页的位置

    官方用例:https://router.vuejs.org/zh-cn/advanced/scroll-behavior.html import Vue from 'vue' import Route ...

  3. CSS3的媒体查询(Media Queries)与移动设备显示尺寸大全

    媒体查询介绍 我今天就总结一下响应式设计的核心CSS技术Media(媒体查询器)的用法. 先看一个简单的例子: <link rel="stylesheet" media=&q ...

  4. 51NOD 1185 威佐夫游戏 V2(威佐夫博弈)

    1185 威佐夫游戏 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 有2堆石子.A B两个人轮流拿,A先拿.每次可以从一堆中取任意个或从2堆中取 ...

  5. Dynamics AX 2012 性能优化之 SQL Server 复制

    Dynamics AX 2012 性能优化之 SQL Server 复制 分析数据滞后 在博文 Dynamics AX 2012 在BI分析中建立数据仓库的必要性 里,Reinhard 阐述了在 AX ...

  6. 我写的.net相关的文章

    此文正在更新中... 广州.net俱乐部相关 复活广州.net俱乐部 office365的开发者训练营,免费,在微软广州举办 被低估的.net(上) - 微软MonkeyFest 2018广州分享会活 ...

  7. Salesforce 导入导出数据简介

    导入数据的方式 有两种方式可以将数据导入Salesforce: 数据导入向导 Data Loader工具 Salesforce支持将csv文件中的数据导入系统. 数据导入向导 数据导入向导可以从设置界 ...

  8. Tomcat异常:The Tomcat server configuration at\Servers\Tomcat v9.0 Server at localhost-c

    今天用Eclipse Java EE版写了几个java工程项目,然后再写java EE项目的jsp页面时,Tomcat出现了这个异常信息: 解决办法: 在菜单栏Window——>Preferen ...

  9. leetcode-83.删除排序链表中的重复元素

    leetcode-83.删除排序链表中的重复元素 Points 链表 题意 给定一个排序链表,删除所有重复的元素,使得每个元素只出现一次. 示例 1: 输入: 1->1->2 输出: 1- ...

  10. 电脑端支付宝支付 -前端获取支付宝返回的form 以及submit 调用支付扫码页面

    前端调取支付宝支付接口(后台进行封装,没有直接调取支付宝接口),调用返回的数据中,将会有一串的form表单数据返回,我们需要将此表单在当前调用页面submit下,以跳转到支付扫码页: 支付宝返回的fo ...