洛谷题目传送门

只是一个经过了蛇皮压行的模板。。。

总结?%%%yyb%%%

#include<bits/stdc++.h>
#define LL long long
#define RG register
#define R RG int
#define G if(++ip==ie)fread(ip=buf,1,S,stdin)
#define For \
R i,j,k,d; \
for(i=2;i<=N;i<<=1) \
for(d=i>>1,j=0;j<N;j+=i)\
for(k=j;k<j+d;++k)
using namespace std;
const LL I=499122177;
const int S=1<<17,YL=998244353;
char buf[S],*ie=buf+S,*ip=ie-1;
int N,a[S],b[S],p[S],q[S];
inline int in(){
G;while(*ip<'-')G;
R x=*ip&15;G;
while(*ip>'-'){x*=10;x+=*ip&15;G;}
return x;
}
void FWTo(R*a){For(a[k+d]+= a[k])%=YL;}
void IWTo(R*a){For(a[k+d]+=YL-a[k])%=YL;}
void FWTa(R*a){For(a[k]+= a[k+d])%=YL;}
void IWTa(R*a){For(a[k]+=YL-a[k+d])%=YL;}
void FWTx(R*a){For{R x=a[k+d];a[k+d]=(a[k]+YL-x) %YL;a[k]=(a[k]+x) %YL;}}
void IWTx(R*a){For{R x=a[k+d];a[k+d]=(a[k]+YL-x)*I%YL;a[k]=(a[k]+x)*I%YL;}}
void(*Fun[6])(R*)={FWTo,IWTo,FWTa,IWTa,FWTx,IWTx};
int main(){
freopen("fwt.in","r",stdin);
R n=in(),i,j;N=1<<n;
for(i=0;i<N;++i)a[i]=in();
for(i=0;i<N;++i)b[i]=in();
for(j=0;j<6;j+=2){
memcpy(p,a,N<<2);Fun[j](p);
memcpy(q,b,N<<2);Fun[j](q);
for(i=0;i<N;++i)p[i]=(LL)p[i]*q[i]%YL;
Fun[j+1](p);
for(i=0;i<N;++i)printf("%d ",p[i]);puts("");
}
return 0;
}

FWT模板(洛谷P4717 【模板】快速沃尔什变换)(FWT)的更多相关文章

  1. 快速沃尔什变换(FWT)学习笔记 + 洛谷P4717 [模板]

    FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor ...

  2. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  3. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  4. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  5. KMP字符串匹配 模板 洛谷 P3375

    KMP字符串匹配 模板 洛谷 P3375 题意 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.(如果 ...

  6. 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记

    一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...

  7. 快速沃尔什变换FWT

    快速沃尔什变换\(FWT\) 是一种可以快速完成集合卷积的算法. 什么是集合卷积啊? 集合卷积就是在集合运算下的卷积.比如一般而言我们算的卷积都是\(C_i=\sum_{j+k=i}A_j*B_k\) ...

  8. 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))

    也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...

  9. 【学习笔鸡】快速沃尔什变换FWT

    [学习笔鸡]快速沃尔什变换FWT OR的FWT 快速解决: \[ C[i]=\sum_{j|k=i} A[j]B[k] \] FWT使得我们 \[ FWT(C)=FWT(A)*FWT(B) \] 其中 ...

随机推荐

  1. Python学习第十六篇——异常处理

    在实际中,很多时候时候,我们并不能保证我们所写的程序是完美的.比如我们程序的本意是:用户在输入框内输入数字,并进行后续数学运算,即使我们提醒了用户需要输入数字而不是文本,但是有时会无意或者恶意输入字符 ...

  2. 怎么去掉Xcode工程中的某种类型的警告 Implicit conversion loses integer precision: 'NSInteger' (aka 'long') to 'int32

    unsigned long numComponents = CGColorGetNumberOfComponents([[UIColor blackColor] CGColor]); 2014年12月 ...

  3. l^oo不可分的两个注意点

    1  不理解等一个等式 , 2.不理解为什么,一个可分的集合里面有不可数的子集?谢谢 1是 2.是可分集合里面每个元素 做中心后的一个开覆盖 所有0 1序列是和所有二进制小数   可以一一对应   而 ...

  4. pycharm异常问题之Unable to save settings: Failed to save settings. Please restart PyCharm

    pycharm异常之Unable to save settings: Failed to save settings. Please restart PyCharm 今天一不小心将电脑关了,但是关机之 ...

  5. Python_阻塞IO、非阻塞IO、IO多路复用

    0.承上 进程: 计算机里最小的资源分配单位: 数据隔离, 利用多核,数据不安全. 线程: 计算机中最小的CPU调度单位: 数据共享,GIL锁,数据不安全. 协程: 线程的一部分,是有用户来调度的; ...

  6. mac下的快捷键

    功能 快捷键 通用 打开新窗口 command + n 打开新标签 command + t 关闭标签 command + w 缩小 command - 放大 command + 全屏.取消全屏 com ...

  7. Git SSH公钥配置

    https://www.cnblogs.com/smuxiaolei/p/7484678.html https://blog.csdn.net/weixin_42063071/article/deta ...

  8. MySqlHelper的封装

    其实MySqlHelper和SqlHelper是一样的,只是使用的驱动不一样而已. public class MySQLHelper { public static final String url ...

  9. MyBatis映射文件3(参数处理Map)

    参数命名 POJO 如果多个参数,正好是业务逻辑的数据模型,那么我们就可以直接传入POJO,这样#{}中就可以直接使用属性名 Map 如果多个参数不是业务逻辑的数据模型,没有对应的POJO,为了方便, ...

  10. php的amqp扩展 安装(windows) rabbitmq学习篇

    因为RabbitMQ是由erlang语言实现的,所以先要安装erlang环境erlang 下载安装 http://www.erlang.org/download.htmlrabbitmq 下载安装 h ...