洛谷题目传送门

只是一个经过了蛇皮压行的模板。。。

总结?%%%yyb%%%

#include<bits/stdc++.h>
#define LL long long
#define RG register
#define R RG int
#define G if(++ip==ie)fread(ip=buf,1,S,stdin)
#define For \
R i,j,k,d; \
for(i=2;i<=N;i<<=1) \
for(d=i>>1,j=0;j<N;j+=i)\
for(k=j;k<j+d;++k)
using namespace std;
const LL I=499122177;
const int S=1<<17,YL=998244353;
char buf[S],*ie=buf+S,*ip=ie-1;
int N,a[S],b[S],p[S],q[S];
inline int in(){
G;while(*ip<'-')G;
R x=*ip&15;G;
while(*ip>'-'){x*=10;x+=*ip&15;G;}
return x;
}
void FWTo(R*a){For(a[k+d]+= a[k])%=YL;}
void IWTo(R*a){For(a[k+d]+=YL-a[k])%=YL;}
void FWTa(R*a){For(a[k]+= a[k+d])%=YL;}
void IWTa(R*a){For(a[k]+=YL-a[k+d])%=YL;}
void FWTx(R*a){For{R x=a[k+d];a[k+d]=(a[k]+YL-x) %YL;a[k]=(a[k]+x) %YL;}}
void IWTx(R*a){For{R x=a[k+d];a[k+d]=(a[k]+YL-x)*I%YL;a[k]=(a[k]+x)*I%YL;}}
void(*Fun[6])(R*)={FWTo,IWTo,FWTa,IWTa,FWTx,IWTx};
int main(){
freopen("fwt.in","r",stdin);
R n=in(),i,j;N=1<<n;
for(i=0;i<N;++i)a[i]=in();
for(i=0;i<N;++i)b[i]=in();
for(j=0;j<6;j+=2){
memcpy(p,a,N<<2);Fun[j](p);
memcpy(q,b,N<<2);Fun[j](q);
for(i=0;i<N;++i)p[i]=(LL)p[i]*q[i]%YL;
Fun[j+1](p);
for(i=0;i<N;++i)printf("%d ",p[i]);puts("");
}
return 0;
}

FWT模板(洛谷P4717 【模板】快速沃尔什变换)(FWT)的更多相关文章

  1. 快速沃尔什变换(FWT)学习笔记 + 洛谷P4717 [模板]

    FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor ...

  2. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  3. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  4. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  5. KMP字符串匹配 模板 洛谷 P3375

    KMP字符串匹配 模板 洛谷 P3375 题意 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.(如果 ...

  6. 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记

    一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...

  7. 快速沃尔什变换FWT

    快速沃尔什变换\(FWT\) 是一种可以快速完成集合卷积的算法. 什么是集合卷积啊? 集合卷积就是在集合运算下的卷积.比如一般而言我们算的卷积都是\(C_i=\sum_{j+k=i}A_j*B_k\) ...

  8. 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))

    也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...

  9. 【学习笔鸡】快速沃尔什变换FWT

    [学习笔鸡]快速沃尔什变换FWT OR的FWT 快速解决: \[ C[i]=\sum_{j|k=i} A[j]B[k] \] FWT使得我们 \[ FWT(C)=FWT(A)*FWT(B) \] 其中 ...

随机推荐

  1. UnderWater+SDN论文之五

    Underwater Sensor Networks with Mobile Agents: Experience from the Field Source: LNICST 2013 论文是来自两个 ...

  2. p151开映射札记

    1. 如何理解这句话? 2.连续有什么用? 3.为什么区间包含,经过算子T还是包含? 谢谢 谢谢学长 我懂了  1.2.     3有点儿模糊 1.连续等价于开集原像是开集,而可逆算子的逆的原像就是的 ...

  3. Java 学习使用常见的开源连接池

    目录 连接池介绍 自定义连接池 JDBC Tomcat Pool DBCP(DataBase Connection Pool) 使用配置文件来设置DBCP C3P0 Druid 连接池介绍 在说连接池 ...

  4. spring datasource jdbc 密码 加解密

    spring datasource 密码加密后运行时解密的解决办法 - 一号门-程序员的工作,程序员的生活(java,python,delphi实战)http://www.yihaomen.com/a ...

  5. 1170 - BLOB/TEXT column 'CustomerName' used in key specification without a key length

    [DTF] Data Transfer 企管宝_2_CRM start[DTF] Getting tables[DTF] Analyzing table: `CustomerInfo`[DTF] Ge ...

  6. Laravel 服务容器、服务提供器、契约实例讲解

        前言 刚开始看laravel服务容器.契约.服务提供器的确生涩难懂,不单单是概念繁多,而且实际的demo很难找(找是找到了,但难用啊),最后就隔一段时间看一遍,大概个十来遍,还真给看出个门道, ...

  7. CentOS 6.4 源码安装MySQL 5.6

    1.安装前准备工作 1.1 必备的包 gcc/g++ :MySQL 5.6开始,需要使用g++进行编译.cmake :MySQL 5.5开始,使用cmake进行工程管理,cmake需要2.8以上版本. ...

  8. [转帖]LCD与LED的区别之背光原理与优缺点对比介绍

    LCD与LED的区别之背光原理与优缺点对比介绍 http://m.elecfans.com/article/620376.html 时下液晶面板与液晶电视技术已经达到炉火纯青的境界,并已经成为大屏幕平 ...

  9. Python对elasticsearch的CRUD

    一.官网提供的Elasticsearch的Python接口包 1.github地址:https://github.com/elastic/elasticsearch-dsl-py 2.安装:pip i ...

  10. WPF程序中App.Config文件的读与写

    WPF程序中的App.Config文件是我们应用程序中经常使用的一种配置文件,System.Configuration.dll文件中提供了大量的读写的配置,所以它是一种高效的程序配置方式,那么今天我就 ...