seaborn分类数据可视化
转载:https://cloud.tencent.com/developer/article/1178368
seaborn针对分类型的数据有专门的可视化函数,这些函数可大致分为三种:
- 分类数据散点图:swarmplot(), stripplot()
- 分类数据的分布图: boxplot(), violinplot()
- 分类数据的统计估算图 : barplot(), pointplot()
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns sns.set(style="whitegrid", color_codes=True)
np.random.seed(sum(map(ord, "categorical"))) #下载三个数据集
titanic = sns.load_dataset("titanic")
tips = sns.load_dataset("tips") #panda DataFrame结构
iris = sns.load_dataset("iris")
#分类数据散点图:stripplot();x是分类特征day,y是目标变量,连续值
sns.stripplot(x="day",y="total_bill",data=tips)

横坐标是分类数据,一些数据点上会互相重叠,不便于观察,一个简单的解决办法是加入 jitter 参数,调整横坐标位置:
sns.stripplot(x="day", y="total_bill", data=tips, jitter=True)

#分类数据散点图:swarmplot(),这个函数的好处就是所有的点都不会重叠,这样可以很清晰的观察到数据的分布
sns.swarmplot(x="day", y="total_bill", data=tips)

通过 hue 参数加入另一个嵌套的分类变量,而且嵌套的分类变量可以以不同的颜色区别
sns.swarmplot(x="day", y="total_bill", hue="sex", data=tips)

seaborn 会尝试推断出分类变量的顺序。数据是 pandas 的分类数据类型,那么就是使用默认的分类数据顺序,如果是其他的数据类型,字符串类型的类别将按照它们在DataFrame中显示的顺序进行绘制,但是数组类别将被排序:
sns.swarmplot(x="size", y="total_bill", data=tips)

将分类变量放在垂直轴上是非常有用的(当类别名称相对较长或有很多类别),可以使用 orient 关键字强制定向,但通常可以互换x和y的变量的数据类型来完成:
sns.swarmplot(x="total_bill", y="day", hue="time", data=tips)

分类数据分布图:
箱型图:箱型图可以直观观察到数据的四分位分布(1/4分位,中位数,3/4分位,以及四分位距),这种可视化对于在机器学习的预处理阶段(尤其是发现数据异常离散值)十分有效。
sns.boxplot(x="day", y="total_bill", hue="time", data=tips)

使用 hue 参数的假设是这个变量嵌套在x或者y轴内。所以默认的情况下,hue 变量的不同类型值会保持偏置状态(两类或几类数据共同在x轴数据类型的一个类中),就像上面那个图所示。但是如果 hue 所使用的变量不是嵌套的,那么你可以使用 dodge 参数来禁止这个默认的偏置状态。
tips["weekend"] = tips["day"].isin(["Sat", "Sun"])
sns.boxplot(x="day", y="total_bill", hue="weekend", data=tips, dodge=False)

提琴图:它结合了箱体图和分布教程中描述的核心密度估计过程
sns.violinplot(x="total_bill", y="day", hue="time", data=tips)

这种方法使用核密度估计来更好地描述值的分布。此外,小提琴内还显示了箱体四分位数和四分位距。由于小提琴使用KDE,还有一些其他可以调整的参数,相对于简单的boxplot增加了一些复杂性:
sns.violinplot(x="total_bill", y="day", hue="time", data=tips, bw=.1, scale="count", scale_hue=False)

当 hue 的嵌套类型只有两类的时候,也可以使用 split 参数将小提琴分割:
sns.violinplot(x="day", y="total_bill", hue="sex", data=tips, split=True)

可以在提琴图内使用 inner 参数以横线的形式来展示每个观察点的分布,来代替箱型的整体分布:
sns.violinplot(x="day", y="total_bill", hue="sex", data=tips, split=True, inner="stick", palette="Set3")

可以将 swarmplot(),violinplot(),或 boxplot() 混合使用,这样可以结合多种绘图的特点展示更完美的效果:
sns.violinplot(x="day", y="total_bill", data=tips, inner=None)
sns.swarmplot(x="day", y="total_bill", data=tips, color="w", alpha=.5)

分类数据统计估计图:展示每一类的集中趋势
Seaborn中 barplot() 函数会在整个数据集上显示估计,默认情况下使用均值进行估计。 当在每个类别中有多个类别时(使用了 hue),它可以使用引导来计算估计的置信区间,并使用误差条来表示置信区间:
sns.barplot(x="sex", y="survived", hue="class", data=titanic)

条形图的特殊情况是当想要显示每个类别的数量,而不是计算统计量,使用 countplot() 函数:
sns.countplot(x="deck", data=titanic, palette="Greens_d")

更多内容见:
seaborn分类数据可视化的更多相关文章
- seaborn分类数据可视化:散点图|箱型图|小提琴图|lv图|柱状图|折线图
一.散点图stripplot( ) 与swarmplot() 1.分类散点图stripplot( ) 用法stripplot(x=None, y=None, hue=None, data=None, ...
- Python图表数据可视化Seaborn:2. 分类数据可视化-分类散点图|分布图(箱型图|小提琴图|LV图表)|统计图(柱状图|折线图)
1. 分类数据可视化 - 分类散点图 stripplot( ) / swarmplot( ) sns.stripplot(x="day",y="total_bill&qu ...
- seaborn教程4——分类数据可视化
https://segmentfault.com/a/1190000015310299 Seaborn学习大纲 seaborn的学习内容主要包含以下几个部分: 风格管理 绘图风格设置 颜色风格设置 绘 ...
- seaborn线性关系数据可视化:时间线图|热图|结构化图表可视化
一.线性关系数据可视化lmplot( ) 表示对所统计的数据做散点图,并拟合一个一元线性回归关系. lmplot(x, y, data, hue=None, col=None, row=None, p ...
- seaborn分布数据可视化:直方图|密度图|散点图
系统自带的数据表格(存放在github上https://github.com/mwaskom/seaborn-data),使用时通过sns.load_dataset('表名称')即可,结果为一个Dat ...
- 用seaborn对数据可视化
以下用sns作为seaborn的别名 1.seaborn整体布局设置 sns.set_syle()函数设置图的风格,传入的参数可以是"darkgrid", "whiteg ...
- Python Seaborn综合指南,成为数据可视化专家
概述 Seaborn是Python流行的数据可视化库 Seaborn结合了美学和技术,这是数据科学项目中的两个关键要素 了解其Seaborn作原理以及使用它生成的不同的图表 介绍 一个精心设计的可视化 ...
- Seaborn数据可视化入门
在本节学习中,我们使用Seaborn作为数据可视化的入门工具 Seaborn的官方网址如下:http://seaborn.pydata.org 一:definition Seaborn is a Py ...
- 5 种使用 Python 代码轻松实现数据可视化的方法
数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使 ...
随机推荐
- 使用Arduino模块实施无线信号的重放攻击
无线电已经存在使用了很长一段时间,在这很长的一段时间里诞生了一个名叫火腿族的集体(小编:嗯 对 就是整天吃火腿的那些人^_^ CQ CQ ).无线电和互联网一样:同样存在一些安全隐患,比如:在无线信 ...
- Bad update sites
Bad update sites com.genuitec.pulse2.client.common.launcher.BadUpdateSiteException Software being in ...
- tomcat版本号的修改
我的是8.5.0我将其改为8.0.0 其他版本改也是一样 我改这个版本号就是因为eclipse上没有tomcat8.5.0的配置 所以将其改为8.0.0 在配置web服务器时 ...
- chapter02 三种决策树模型:单一决策树、随机森林、GBDT(梯度提升决策树) 预测泰坦尼克号乘客生还情况
单一标准的决策树:会根每维特征对预测结果的影响程度进行排序,进而决定不同特征从上至下构建分类节点的顺序.Random Forest Classifier:使用相同的训练样本同时搭建多个独立的分类模型, ...
- CodeForces - 140E:New Year Garland (组合数&&DP)
As Gerald, Alexander, Sergey and Gennady are already busy with the usual New Year chores, Edward has ...
- css hover遮罩层
马上月底了, 这个月忙于工作和生活, 没有很好的写一篇博客, 有点忧伤. 为了弥补, 就写点简单的. 最近项目有个需求, 就是鼠标移入的时候显示一个层, 移除的时候这个层消失. 当然层是可以点击进行额 ...
- .NET 之 垃圾回收机制GC
一.GC的必要性 1.应用程序对资源操作,通常简单分为以下几个步骤:为对应的资源分配内存 → 初始化内存 → 使用资源 → 清理资源 → 释放内存. 2.应用程序对资源(内存使用)管理的方式,常见的一 ...
- 古典、SOA、传统、K8S、ServiceMesh
古典.SOA.传统.K8S.ServiceMesh 十几年前就有一些公司开始践行服务拆分以及SOA,六年前有了微服务的概念,于是大家开始思考SOA和微服务的关系和区别.最近三年Spring Cloud ...
- JAVA中神奇的双刃剑--Unsafe
前提 参考资料: Java魔法类:sun.misc.Unsafe 在openjdk8下看Unsafe源码 Unsafe介绍 在Oracle的Jdk8无法获取到sun.misc包的源码,想看此包的源码可 ...
- Linux中常用的函数
1.devm_kzalloc() 函数 devm_kzalloc() 和kzalloc()一样都是内核内存分配函数,但是devm_kzalloc()是跟设备(device)有关的,当设备(device ...