一、 广播变量

广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量。广播变量可被用于有效地给每个节点一个大输入数据集的副本。Spark还尝试使用高效地广播算法来分发变量,进而减少通信的开销。 Spark的动作通过一系列的步骤执行,这些步骤由分布式的洗牌操作分开。Spark自动地广播每个步骤每个任务需要的通用数据。这些广播数据被序列化地缓存,在运行任务之前被反序列化出来。这意味着当我们需要在多个阶段的任务之间使用相同的数据,或者以反序列化形式缓存数据是十分重要的时候,显式地创建广播变量才有用。

二、为什么使用广播变量

假如我们要共享的变量map,1M

在默认的,task执行的算子中,使用了外部的变量,每个task都会获取一份变量的副本,

在什么情况下,会出现性能上的恶劣的影响呢?
1000个task。大量task的确都在并行运行。这些task里面都用到了占用1M内存的map,那么首先,map会拷贝1000份副本,通过网络传输到各个task中去,给task使用。总计有1G的数据,会通过网络传输。网络传输的开销,不容乐观啊!!!网络传输,也许就会消耗掉你的spark作业运行的总时间的一小部分。
map副本,传输到了各个task上之后,是要占用内存的。1个map的确不大,1M;1000个map分布在你的集群中,一下子就耗费掉1G的内存。对性能会有什么影响呢?不必要的内存的消耗和占用,就导致了,你在进行RDD持久化到内存,也许就没法完全在内存中放下;就只能写入磁盘,最后导致后续的操作在磁盘IO上消耗性能;
你的task在创建对象的时候,也许会发现堆内存放不下所有对象,也许就会导致频繁的垃圾回收器的回收,GC。GC的时候,一定是会导致工作线程停止,也就是导致Spark暂停工作那么一点时间。频繁GC的话,对Spark作业的运行的速度会有相当可观的影响。
 
如果说,task使用大变量(1m~100m),明知道会导致性能出现恶劣的影响。那么我们怎么来解决呢?
广播,Broadcast,将大变量广播出去。而不是直接使用。
 
广播变量的好处,不是每个task一份变量副本,而是变成每个节点的executor才一份副本。这样的话,就可以让变量产生的副本大大减少。
广播变量,初始的时候,就在Drvier上有一份副本。task在运行的时候,想要使用广播变量中的数据,此时首先会在自己本地的Executor对应的
BlockManager中,尝试获取变量副本;如果本地没有,BlockManager,也许会从远程的Driver上面去获取变量副本;也有可能从距离比较近的其他
节点的Executor的BlockManager上去获取,并保存在本地的BlockManager中;BlockManager负责管理某个Executor对应的内存和磁盘上的数据,
此后这个executor上的task,都会直接使用本地的BlockManager中的副本。
优点:
    不是每个task一份副本,而是变成每个节点Executor上一个副本。

1.举例来说:

50个Executor 1000个task。
一个map10M

默认情况下,1000个task 1000个副本

1000 * 10M = 10 000M = 10 G

10G的数据,网络传输,在集群中,耗费10G的内存资源

如果使用 广播变量,

50个Executor ,50个副本,10M*50 = 500M的数据

网络传输,而且不一定是从Drver传输到各个节点,还可能是从就近的节点 
的Executor的BlockManager上获取变量副本,网络传输速度大大增加。

之前 10000M 现在 500M

20倍网络传输性能的消耗。20倍内存消耗的减少。

三、如何使用

开始使用broadcast变量,使用完后,程序结束记得释放

  sc = SparkContext(appName=AppNames.JOURNEY_AGGREGATOR_APP_NAME)
broadCastForLog = None
try:
broadCastForLog = ELogForDistributedApp.setLogConf2BroadCast(sc)
elogging.initLogFromDict(broadCastForLog.value)
except StandardError:
pass .......
#执行完程序逻辑,记得释放该变量 if broadCastForLog is not None:
broadCastForLog.unpersist(False)

#获取要被共享的大变量,这里是log配置

class ELogForDistributedApp(object):

    LOGHDFSPATH = "/user/hdfs/test/logging/logging_hdfs.json"
@staticmethod
def setLogConf2BroadCast(sc):
logFilePath = ELogForDistributedApp.LOGHDFSPATH
if sc is not None:
configDict = HDFSOperation.getConfigFromHDFS(logFilePath,sc)
broadCast = sc.broadcast(configDict)
#globals()['broadCast'] = broadCast
#elogging.initLogFromDict(broadCast.value)
return broadCast
#print broadCast.value
else:
return None
    def initLogFromDict(self):
elogging.initLogFromDict(self.eloggingConfig)

从hdfs中找到相应配置文件

class HDFSOperation(object):

    @staticmethod
def getConfigFromHDFS(hdfsPath,sc):
if sc is not None:
filesystem_class = sc._gateway.jvm.org.apache.hadoop.fs.FileSystem
hadoop_configuration = sc._jsc.hadoopConfiguration()
fs =filesystem_class.get(hadoop_configuration)
path_class = sc._gateway.jvm.org.apache.hadoop.fs.Path
pathObj = path_class(hdfsPath)
try:
hdfsInStream = fs.open(pathObj)
bufferedReader_class = sc._gateway.jvm.java.io.BufferedReader
inputStreamReader_class = sc._gateway.jvm.java.io.InputStreamReader
bufferedReader = bufferedReader_class(inputStreamReader_class(hdfsInStream))
except IOError,msg:
print str(msg)
return None else:
return None
configStr = ''
while True:
tmpStr = bufferedReader.readLine()
if tmpStr == None:
break
configStr += tmpStr
try:
confDict = json.loads(configStr)
except IOError,msg:
print str(msg)
return None
return confDict

参考文档

  1. Spark Programming Guide1.6.3
  2. How can I update a broadcast variable in spark streaming?
  3. Spark踩坑记——共享变量

Spark 广播变量BroadCast的更多相关文章

  1. spark 广播变量

    Spark广播变量 使用广播变量来优化,广播变量的原理是: 在每一个Executor中保存一份全局变量,task在执行的时候需要使用和这一份变量就可以,极大的减少了Executor的内存开销. Exe ...

  2. spark中的广播变量broadcast

    Spark中的Broadcast处理 首先先来看一看broadcast的使用代码: val values = List[Int](1,2,3) val broadcastValues = sparkC ...

  3. 【Spark-core学习之七】 Spark广播变量、累加器

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...

  4. Spark2.0基于广播变量broadcast实现实时数据按天统计

    package com.gm.hive.SparkHive; import java.text.SimpleDateFormat; import java.util.Arrays; import ja ...

  5. spark广播变量定时更新

    广播变量 先来简单介绍下spark中的广播变量: 广播变量允许程序员缓存一个只读的变量在每台机器上面,而不是每个任务保存一份拷贝.例如,利用广播变量,我们能够以一种更有效率的方式将一个大数据量输入集合 ...

  6. Spark 广播变量 和 累加器

    1. 广播变量 理解图 使用示例 # word.txt hello scala hello python hello java hello go hello julia hello C++ hello ...

  7. Spark 广播变量和累加器

    Spark 的一个核心功能是创建两种特殊类型的变量:广播变量和累加器 广播变量(groadcast varible)为只读变量,它有运行SparkContext的驱动程序创建后发送给参与计算的节点.对 ...

  8. Spark广播变量和累加器

    一.广播变量图解 二.代码 val conf = new SparkConf() conf.setMaster("local").setAppName("brocast& ...

  9. 初识Flink广播变量broadcast

    Broadcast 广播变量:可以理解为是一个公共的共享变量,我们可以把一个dataset 或者不变的缓存对象(例如map list集合对象等)数据集广播出去,然后不同的任务在节点上都能够获取到,并在 ...

随机推荐

  1. GCD 与 LCM UVA - 11388

    题目链接: https://cn.vjudge.net/problem/23709/origin 本题其实有坑 数据大小太大, 2的32次方,故而一定是取巧的算法,暴力不可能过的 思路是最大公因数的倍 ...

  2. 洛谷.3808/3796.[模板]AC自动机

    题目链接:简单版,增强版 简单版: #include <cstdio> #include <cstring> const int N=1e6+5,S=26; char s[N] ...

  3. Android:ViewGroup和View的Touch事件

    Android中ViewGroup和View中的Touch事件传递机制分析 关键字:GroupView:View:Touch事件 基础知识: onInterceptTouchEvent():在View ...

  4. STM32——C语言知识点:指针、结构体

    /* ============================================================================ Name : Cyuyanfuxi.c ...

  5. DOM操作技术

    1.动态script function loadScript(url) { var script = document.createElement("script"); scrip ...

  6. 什么是OKR?

    什么是OKR OKR全称是Objectives and Key Results,即目标与关键成果法.OKR是一套定义和跟踪目标及其完成情况的管理工具和方法.1999年 Intel公司发明了这种方法,后 ...

  7. navicat for mysql 只把指定的表数据结构导出

    第一步 右键点击数据库名字,点击数据传输,在常规视图下选择自己要导出的表, 选择要导出的表,点击文件,然后切换到高级视图下,把插入记录前面的对号取消勾选,点击开始即可只导出表结构

  8. ssm数据库异常问题

    org.mybatis.spring.MyBatisSystemException: nested exception is org.apache.ibatis.reflection.Reflecti ...

  9. sklearn LDA降维算法

    sklearn LDA降维算法 LDA(Linear Discriminant Analysis)线性判断别分析,可以用于降维和分类.其基本思想是类内散度尽可能小,类间散度尽可能大,是一种经典的监督式 ...

  10. 基于ubuntu的docker安装

    系统版本:Ubuntu16.04 docker版本:18.02.0 Ubuntu 系统的内核版本>3.10(执行 uname -r 可查看内核版本)   在安装前先简单介绍一下docker,按照 ...