常规参数General Parameters

  1. booster[default=gbtree]:选择基分类器,可以是:gbtree,gblinear或者dart。gbtree和draf基于树模型,而gblinear基于线性模型。
  2. slient[default=0]:是否有运行信息输出,设置为1则没有运行信息输出。
  3. nthread[default to maximum number of threads available if not set]:线程数,默认使用能使用的最大线程数。

模型参数Booster Parameters

  1. eta[default=0.3]:收缩参数,也即学习率。用于更新叶节点权重时,乘该系数,避免步长过大。参数值越大,越可能无法收敛。把eta设置的小一些,小的学习率可以使后面的学习更加仔细。
  2. min_child_weight[default=1]:每个叶子里面的h的和至少是多少,这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数越小,越容易过拟合。
  3. max_depth[default=6]:每棵树的最大深度,该参数设置越大,越容易过拟合。
  4. max_leaf_nodes:最大叶节点数,和max_depth类似。
  5. gamma[default=0]:后剪枝时,用于控制是否后剪枝。
  6. max_delta_step[default=0]:该参数可以使得更新更加平缓,如果取0表示没有约束,如果取正值则使得更新步骤更加保守,防止更新时迈的步子太大。
  7. subsample[default=1]:样本随机样本,该参数越大,越容易过拟合,但设置过大也会造成过拟合。
  8. colsample_bytree[default=1]:列采样,对每棵树生成时用的特征进行列采样,一般设置为0.5-1
  9. lambda[default=1]:模型的L2正则化参数,参数越大,越不容易过拟合。
  10. alpha[default=0]:模型的L1正则化参数,参数越大,越不容易过拟合。
  11. scale_pos_weight[default=1]:如果取值大于0,在类别样本偏斜时,有助于快速收敛。

学习任务参数(Learning Task Parameters)

  1. objective[default=reg:linear]:定义最小化损失函数类型,常用参数:
  • binary:logistic –二元分类的逻辑回归模型,返回预测概率(p(y=1|x,w))
  • multi:softmax –使用softmax objective的多类分类模型,返回预测的分类。这里需要设置一个额外的num_class参数,表示类的个数。
  • multi:softprob –与softmax相同,但是返回每个数据点属于每个类的预测概率。
  1. eval_metric[default according to objective]:用于衡量验证数据的参数,即是各评价标准,常用参数如下:
  • rmse – root mean square error
  • mae – mean absolute error
  • logloss – negative log-likelihood
  • error – Binary classification error rate (0.5 threshold)
  • merror – Multiclass classification error rate
  • mlogloss – Multiclass logloss
  • auc: Area under the curve
  1. seed[default=0]:随机种子,用于产生可复现的结果。

    这里,xgboost与sklearn的命名风格有点区别,如:
  • eta->learning_rate
  • lambda->reg_lambda
  • alpha->reg_alpha

参数调优

  1. import必要的库

     #Import libraries:
    import pandas as pd
    import numpy as np
    import xgboost as xgb
    from xgboost.sklearn import XGBClassifier
    from sklearn import cross_validation, metrics #Additional scklearn functions
    from sklearn.grid_search import GridSearchCV #Perforing grid search import matplotlib.pylab as plt
    %matplotlib inline
    from matplotlib.pylab import rcParams
    rcParams['figure.figsize'] = 12, 4 train = pd.read_csv('train_modified.csv')
    target = 'Disbursed'
    IDcol = 'ID'

注意,这里import两种XGBoost:

xgboost参数及调参的更多相关文章

  1. 【Python机器学习实战】决策树与集成学习(七)——集成学习(5)XGBoost实例及调参

    上一节对XGBoost算法的原理和过程进行了描述,XGBoost在算法优化方面主要在原损失函数中加入了正则项,同时将损失函数的二阶泰勒展开近似展开代替残差(事实上在GBDT中叶子结点的最优值求解也是使 ...

  2. XGBoost和LightGBM的参数以及调参

    一.XGBoost参数解释 XGBoost的参数一共分为三类: 通用参数:宏观函数控制. Booster参数:控制每一步的booster(tree/regression).booster参数一般可以调 ...

  3. XGBOOST应用及调参示例

    该示例所用的数据可从该链接下载,提取码为3y90,数据说明可参考该网页.该示例的“模型调参”这一部分引用了这篇博客的步骤. 数据前处理 导入数据 import pandas as pd import ...

  4. xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度?

    问题: 用xgboost/gbdt在在调参的时候把树的最大深度调成6就有很高的精度了.但是用DecisionTree/RandomForest的时候需要把树的深度调到15或更高.用RandomFore ...

  5. xgboost的遗传算法调参

    遗传算法适应度的选择: 机器学习的适应度可以是任何性能指标 —准确度,精确度,召回率,F1分数等等.根据适应度值,我们选择表现最佳的父母(“适者生存”),作为幸存的种群. 交配: 存活下来的群体中的父 ...

  6. lgb参数及调参

    1 参数含义 max_depth: 设置树的最大深度,默认为-1,即不限制最大深度,它用于限制过拟合 num_leave: 单颗树的叶子数目,默认为31 eval_metric: 评价指标,可以用lg ...

  7. XGBoost参数调优完全指南(附Python代码)

    XGBoost参数调优完全指南(附Python代码):http://www.2cto.com/kf/201607/528771.html https://www.zhihu.com/question/ ...

  8. xgboost&lightgbm调参指南

    本文重点阐述了xgboost和lightgbm的主要参数和调参技巧,其理论部分可见集成学习,以下内容主要来自xgboost和LightGBM的官方文档. xgboost Xgboost参数主要分为三大 ...

  9. Python中Gradient Boosting Machine(GBM)调参方法详解

    原文地址:Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python by Aarshay Jain 原文翻译与校对 ...

随机推荐

  1. Linux中特别要注意用户与文件权限的问题

    1.在使用Linux中,肯定会涉及不同用户的切换,但是如果不合理切换的话,会造成很多应用启动不了,所以这时候要多多使用ll看一下文件目录的权限问题,因为如果习惯用root启动程序,然后切换普通用户继续 ...

  2. 基于C#反射机制的工厂模式

    简单介绍 反射提供了描写叙述程序集.模块和类型的对象(Type 类型). 能够使用反射动态创建类型的实例,将类型绑定到现有对象,或从现有对象获取类型并调用其方法或訪问其字段和属性. 假设代码中使用了特 ...

  3. AppStoreID--安装URL--应用更新URL--应用评分URL

    #define AppStoreID @"987353224" //应用安装URL #define AppStoreInstallURLFormat @"https:// ...

  4. HTML_ul无序列表

    本文来源于:http://blog.csdn.net/svitter 嵌套无序列表应用 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Tra ...

  5. TCP基础

    TCP基础知识 复习   前言 说来惭愧,大二时候学的计算机网络好多都不太记得了,不过还好有认真学过,捡起来也挺快的,就是对于现在业界中使用的网络算法的不是很懂: 1 TCP报文段结构 1.1 序号和 ...

  6. JTextpane 加入的行号

    最近项目需求,在需求JTextPane加入行号等信息,网上找了半天才发现JTextArea加入行号信息.copy正在研究在线程序.他发现自己能够做出改变来改变JTextPane显示行号. 代码: pa ...

  7. yii2.0预先处理方法

    public function beforeAction($action){ return $action; }

  8. Eclipse中设置自定义文档签名

    今天第一次认真学习eclipse的使用,看到自定义文档签名,步骤如下: 1.点击window->preferences->java->Code Style->Code Temp ...

  9. twemproxy分片处理原理--剖析twemproxy代码正编

    twemproxy在redis上能处理多命令流程只有mset,mget,del的命令,例如mset的话是mset k1 v1 k2 v2 k3 k3,mget的话是mget k1 k2 k3,del的 ...

  10. Virtualization of iSCSI storage

    This invention describes methods, apparatus and systems for virtualization of iSCSI storage. Virtual ...