这里用到了一些数论知识

首先素因子都大于M等价与M! 互质

然后又因为当k与M!互质且k>M!时当且仅当k mod M! 与M!互质(欧几里得算法的原理)

又因为N>=M, 所以N!为M!的倍数

所以只要求1到M!中与M!互质的数的个数,在乘上N!/M!

可以理解为每一块M!有这么多,然而N!中有很多块M!,所以乘上N!/M!

然后根据phifac[n] = phi[n!] = n!(1-1/p1)(1-1/p2)......(1-1/k)的定义可以得出

当n为质数的时候 phifac[n] = (n-1) * phifac[n-1]

当n不为质数的时候 phifac[n] = n * phifac[n-1]

(拿笔根据定义手算一下就可以得出)

边界是phifac[1] = phifac[2] = 1

书中问到为什么phifac[1] = 1

实际上是因为如果m=1,那么除1以外的所有数的素因子都大于1(素因子最小为2)

所以当m=1时后面乘的时候ans是为1的,如果ans为0的话最终答案为0

而实际上答案为N!-1

根据定义是phifac[1]=0,但根据这道题实际情况phifac[1]=1

最后注意中间结果可能溢出,所以用long long

#include<cstdio>
#include<vector>
#include<cstring>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 11234567;
const int MOD = 100000007;
bool is_prime[MAXN];
vector<int> prime;
int phifac[MAXN]; void init()
{
memset(is_prime, true, sizeof(is_prime));
is_prime[0] = is_prime[1] = false;
REP(i, 2, MAXN)
{
if(is_prime[i]) prime.push_back(i);
REP(j, 0, prime.size())
{
if(i * prime[j] > MAXN) break;
is_prime[i*prime[j]] = false;
if(i % prime[j] == 0) break;
}
}
} int main()
{
init();
int n, m; phifac[1] = phifac[2] = 1;
REP(i, 3, MAXN)
phifac[i] = (long long)phifac[i-1] * (is_prime[i] ? i-1 : i) % MOD; while(~scanf("%d%d", &n, &m) && n)
{
int ans = phifac[m];
REP(i, m + 1, n + 1) ans = (long long)ans * i % MOD;
printf("%d\n", (ans - 1 + MOD) % MOD);
} return 0;
}

紫书 例题 10-26 UVa 11440(欧拉函数+数论)的更多相关文章

  1. UVa 11440 (欧拉函数) Help Tomisu

    题意: 给出N和M,统计区间x ∈ [2, N!],x满足所有素因子都大于M的x的个数. 分析: 首先将问题转化一下,所有素因子都大于M 等价于 这个数与M!互素 对于k大于M!,k与M!互素等价于 ...

  2. UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)

    题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...

  3. UVa 10837 (欧拉函数 搜索) A Research Problem

    发现自己搜索真的很弱,也许做题太少了吧.代码大部分是参考别人的,=_=|| 题意: 给出一个phi(n),求最小的n 分析: 回顾一下欧拉函数的公式:,注意这里的Pi是互不相同的素数,所以后面搜索的时 ...

  4. UVA 10820 欧拉函数模板题

    这道题就是一道简单的欧拉函数模板题,需要注意的是,当(1,1)时只有一个,其他的都有一对.应该对欧拉函数做预处理,显然不会超时. #include<iostream> #include&l ...

  5. UVA 11426 (欧拉函数&&递推)

    题意:给你一个数N,求N以内和N的最大公约数的和 解题思路: 一开始直接想暴力做,4000000的数据量肯定超时.之后学习了一些新的操作. 题目中所要我们求的是N内gcd之和,设s[n]=s[n-1] ...

  6. UVA - 11426 欧拉函数(欧拉函数表)

    题意: 给一个数 N ,求 N 范围内所有任意两个数的最大公约数的和. 思路: f 数组存的是第 n 项的 1~n-1 与 n 的gcd的和,sum数组存的是 f 数组的前缀和. sum[n]=f[1 ...

  7. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  8. 中国剩余定理(CRT)与欧拉函数[数论]

    中国剩余定理 ——!x^n+y^n=z^n 想必大家都听过同余方程这种玩意,但是可能对于中国剩余定理有诸多不解,作为一个MOer&OIer,在此具体说明. 对于同余方程: x≡c1(mod m ...

  9. 紫书 习题 10-18 UVa 10837 (欧拉函数变形)

    这道题很巧妙,要把式子变一下 phi(n) = n * (1 - 1 / p1) * (1 - 1 / p2)--(1 - 1 / pr) = n * ((p1-1) / p1) * ((p1-2) ...

随机推荐

  1. App.config配置详解

    经上一篇文章https://www.cnblogs.com/luna-hehe/p/9104701.html发现自己对配置文件很是不了解,同样还是查了半天终于发现另一片宝贵文档https://www. ...

  2. direct2d: antialiasing and drawing a line with a 1 pixel stroke

    http://xboxforums.create.msdn.com/forums/t/61448.aspx I'm currently porting a number of custom MFC C ...

  3. SpringBoot学习笔记(16)----SpringBoot整合Swagger2

    Swagger 是一个规范和完整的框架,用于生成,描述,调用和可视化RESTful风格的web服务 http://swagger.io Springfox的前身是swagger-springmvc,是 ...

  4. 第三方库requests

    requests库 # 1.记得安装 第三方 模块 requests # pip install requests import requests url = 'http://www.baidu.co ...

  5. NuSOAP简介 php中使用webservice

    许多机构已经采用了Apach和PHP作为他们的Web应用环境.在Web services模式中采用PHP可能看上去可能会比较难.但是事实上,搭配NuSoap,你可以轻松的应用PHP构建SOAP的客户端 ...

  6. php include 和require的区别与转码

    php include 和require的区别相同点:include和require 都能把另外一个文件包含到当前文件中.  不同点:使用include时,当包含的文件不存在时,系统会报出警告级别的错 ...

  7. python 中i++、逻辑表达式

    参考链接:https://www.cnblogs.com/yupeng/p/3345946.html i++运算符 python中没有类似i++之类实现+1的运算符,但是有++i,+-i.之类的,他们 ...

  8. 数组名作为函数参数以及sizeof用法

    来源:https://blog.csdn.net/jay_zhouxl/article/details/51745518 int f(int *p,char *a) { printf("p[ ...

  9. 洛谷 P1702 突击考试

    P1702 突击考试 题目描述 一日,老师决定进行一次突击考试.已知每个学生都有一个考试能力等级,教室里一共有N个课桌,按照顺序排成一列,每张课桌可以坐两个人,第i张课桌坐的两个人的能力等级为(A[i ...

  10. iOS开发 - 二维码的生成与读取

    二维码的生成 从iOS7開始集成了二维码的生成和读取功能 此前被广泛使用的zbarsdk眼下不支持64位处理器 生成二维码的步骤: 导入CoreImage框架 通过滤镜CIFilter生成二维码 二维 ...