Marriage Match IV

HDOJ-3416

  • 这题的题意就是要找两点之间最短路的路径个数,而且边不能重复。
  • 最大流和最短路的结合。首先正向和反向建图,再跑两遍dijikstra。到这里就求出来起点到某一点的最短路以及某一点到终点的最短路。
  • 还有一个关键的公式就是如何判断一条边是否在最短路中:如果起点到该边的起点的最短距离加上该边的终点到终点的最短距离再加上该边的长度等于起点到终点的最短路,那该边就在最短路中。
  • 还有一个需要注意的地方就是最大流算法的选用,如果需用EK算法,时间复杂度和边数成2次方关系。所以,这里选用ISAP高级算法。但也给出EK算法的求解过程。

ISAP算法

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int INF=0X3F3F3F3F;
const int maxn=1003;
const int maxm=100005;
int n,m;
int map[maxn][maxn];
int d[2][maxn];//最短路
int st,ed;
struct Edge {
int from, to, cap, flow;
Edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {}
}; bool operator<(const Edge& a, const Edge& b) {
return a.from < b.from || (a.from == b.from && a.to < b.to);
} struct ISAP {
int n, m, s, t;
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
int p[maxn];
int num[maxn]; void AddEdge(int from, int to, int cap) {
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
} bool BFS() {
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(t);
vis[t] = 1;
d[t] = 0;
while (!Q.empty()) {
int x = Q.front();
Q.pop();
for (int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i] ^ 1];
if (!vis[e.from] && e.cap > e.flow) {
vis[e.from] = 1;
d[e.from] = d[x] + 1;
Q.push(e.from);
}
}
}
return vis[s];
} void init(int n) {
this->n = n;
for (int i = 0; i < n; i++) G[i].clear();
edges.clear();
} int Augment() {
int x = t, a = INF;
while (x != s) {
Edge& e = edges[p[x]];
a = min(a, e.cap - e.flow);
x = edges[p[x]].from;
}
x = t;
while (x != s) {
edges[p[x]].flow += a;
edges[p[x] ^ 1].flow -= a;
x = edges[p[x]].from;
}
return a;
} int Maxflow(int s, int t) {
this->s = s;
this->t = t;
int flow = 0;
BFS();
memset(num, 0, sizeof(num));
for (int i = 0; i < n; i++) num[d[i]]++;
int x = s;
memset(cur, 0, sizeof(cur));
while (d[s] < n) {
if (x == t) {
flow += Augment();
x = s;
}
int ok = 0;
for (int i = cur[x]; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if (e.cap > e.flow && d[x] == d[e.to] + 1) {
ok = 1;
p[e.to] = G[x][i];
cur[x] = i;
x = e.to;
break;
}
}
if (!ok) {
int m = n - 1;
for (int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if (e.cap > e.flow) m = min(m, d[e.to]);
}
if (--num[d[x]] == 0) break;
num[d[x] = m + 1]++;
cur[x] = 0;
if (x != s) x = edges[p[x]].from;
}
}
return flow;
}
}ek;
struct edge{
int to;
int cost;
int next;
};
int head[maxn];
int heads[maxn];
edge ma[maxm];
edge mas[maxm];
struct node{
int dis;
int to;
bool operator<(const node& t)const{
return dis>t.dis;
}
};
void dijikstra(int s,int f,int *head,edge ma[]){
for(int i=1;i<=n;i++){
d[f][i]=INF;
}
d[f][s]=0;
priority_queue<node> q;
q.push({0,s});
while(!q.empty()){
node now=q.top();
q.pop();
int v=now.to;
int dis=now.dis;
if(d[f][v]<dis){
continue;
}
for(int i=head[v];i!=-1;i=ma[i].next){
int u=ma[i].to;
//cout<<u<<endl;
int cost=ma[i].cost;
if(d[f][u]>d[f][v]+cost){
d[f][u]=d[f][v]+cost;
q.push({d[f][u],u});
}
}
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin>>t;
while(t--){
cin>>n>>m;
memset(head,-1,sizeof(head));
memset(heads,-1,sizeof(heads));
for(int i=0;i<m;i++){
int a,b,c;
cin>>a>>b>>c;
if(a==b)
continue;
ma[i].to=b;
ma[i].cost=c;
ma[i].next=head[a];
head[a]=i; mas[i].to=a;
mas[i].cost=c;
mas[i].next=heads[b];
heads[b]=i;
}
cin>>st>>ed;
dijikstra(st,0,head,ma);
dijikstra(ed,1,heads,mas);
//cout<<d[0][ed]<<endl;
//cout<<d[1][st]<<endl;
int final=d[0][ed];
if(final==INF){
cout<<0<<endl;
continue;
}
ek.init(n);
for(int i=1;i<=n;i++){
for(int j=head[i];j!=-1;j=ma[j].next){
if(d[0][i]+d[1][ma[j].to]+ma[j].cost==final)
ek.AddEdge(i,ma[j].to,1);
}
}
cout<<ek.Maxflow(st,ed)<<endl;
}
return 0;
}

EK算法

struct edge{
int to;
int cost;
int next;
};
int head[maxn];
int heads[maxn];
edge ma[maxm];
edge mas[maxm];
struct node{
int dis;
int to;
bool operator<(const node& t)const{
return dis>t.dis;
}
};
void dijikstra(int s,int f,int *head,edge ma[]){
for(int i=1;i<=n;i++){
d[f][i]=INF;
}
d[f][s]=0;
priority_queue<node> q;
q.push({0,s});
while(!q.empty()){
node now=q.top();
q.pop();
int v=now.to;
int dis=now.dis;
if(d[f][v]<dis){
continue;
}
for(int i=head[v];i!=-1;i=ma[i].next){
int u=ma[i].to;
//cout<<u<<endl;
int cost=ma[i].cost;
if(d[f][u]>d[f][v]+cost){
d[f][u]=d[f][v]+cost;
q.push({d[f][u],u});
}
}
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin>>t;
while(t--){
cin>>n>>m;
memset(head,-1,sizeof(head));
memset(heads,-1,sizeof(heads));
for(int i=0;i<m;i++){
int a,b,c;
cin>>a>>b>>c;
if(a==b)
continue;
ma[i].to=b;
ma[i].cost=c;
ma[i].next=head[a];
head[a]=i; mas[i].to=a;
mas[i].cost=c;
mas[i].next=heads[b];
heads[b]=i;
}
cin>>st>>ed;
dijikstra(st,0,head,ma);
dijikstra(ed,1,heads,mas);
//cout<<d[0][ed]<<endl;
//cout<<d[1][st]<<endl;
int final=d[0][ed];
if(final==INF){
cout<<0<<endl;
continue;
}
ek.init(n);
for(int i=1;i<=n;i++){
for(int j=head[i];j!=-1;j=ma[j].next){
if(d[0][i]+d[1][ma[j].to]+ma[j].cost==final)
ek.AddEdge(i,ma[j].to,1);
}
}
cout<<ek.Maxflow(st,ed)<<endl;
}
return 0;
}

HDOJ-3416(最大流+最短路+ISAP算法+向前星dijikstra算法+如何判断一条边是否在最短路中)的更多相关文章

  1. 模板——最小生成树prim算法&&向前星理解

    通过最小生成树(prim)和最短路径优化引出的向前星存图,时至今日才彻底明白了.. head[i]存储的是父节点为i引出的最后一条边的编号, next负责把head[i]也就是i作为父节点的所有边连接 ...

  2. 笔试算法题(19):判断两条单向链表的公共节点 & 字符集删除函数

    出题:给定两个单向链表的头结点,判断其是否有公共节点并确定第一个公共节点的索引: 分析: 由于是单向链表,所以每个节点有且仅有一个后续节点,所以只可能是Y型交叉(每条链表中的某个节点同时指向一个公共节 ...

  3. HDU 3416 Marriage Match IV(ISAP+最短路)题解

    题意:从A走到B,有最短路,问这样不重复的最短路有几条 思路:先来讲选有效边,我们从start和end各跑一次最短路,得到dis1和dis2数组,如果dis1[u] + dis2[v] + cost[ ...

  4. poj-1459-最大流dinic+链式前向星-isap+bfs+stack

    title: poj-1459-最大流dinic+链式前向星-isap+bfs+stack date: 2018-11-22 20:57:54 tags: acm 刷题 categories: ACM ...

  5. 【模板】 最大流模板(ISAP)

    题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行 ...

  6. 最大流算法之Ford-Fulkerson算法与Edmonds–Karp算法

    引子 曾经很多次看过最大流的模板,基础概念什么的也看了很多遍.也曾经用过强者同学的板子,然而却一直不会网络流.虽然曾经尝试过写,然而即使最简单的一种算法也没有写成功过,然后对着强者大神的代码一点一点的 ...

  7. coding++:RateLimiter 限流算法之漏桶算法、令牌桶算法--简介

    RateLimiter是Guava的concurrent包下的一个用于限制访问频率的类 <dependency> <groupId>com.google.guava</g ...

  8. 【算法•日更•第三十五期】FF算法优化:EK算法

    ▎写在前面 FF算法传送门 之前我们已经学过了FF算法(全称Ford-Fulkerson算法)来找最大流,但是这种算法仍有诸多不对的地方. 其实这种算法存在着严重的效率的问题,请看下面的图: 以这个图 ...

  9. 最短路径算法之二——Dijkstra算法

    Dijkstra算法 Dijkstra算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 注意该算法要求图中不存在负权边. 首先我们来定义一个二维数组Edge[MAXN][MAXN]来存储 ...

随机推荐

  1. Chocolate Bunny CodeForces - 1407C 思维

    题意: 交互题 题目输入一个n,你需要输出一个满足要求的[1,n]的排列. 你可以最多询问2*n次来确定你要输出的排列·中每一个位置的值 每一次询问格式为"? a b" 它会回复你 ...

  2. cmath取整函数

    #include <iostream> #include <cmath>//头文件 using namespace std; int main () { double n; c ...

  3. fzu2178礼物分配 (状压+二分)

    Problem Description 在双胞胎兄弟Eric与R.W的生日会上,他们共收到了N个礼物,生日过后他们决定分配这N个礼物(numv+numw=N).对于每个礼物他们俩有着各自心中的价值vi ...

  4. hdu2825 Wireless Password(AC自动机+状压dp)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission ...

  5. 2020-2021 ICPC, NERC, Southern and Volga Russian Regional Contest (Online Mirror, ICPC Rules) D. Firecrackers (贪心,二分)

    题意:有个长度为\(n\)的监狱,犯人在位置\(a\),cop在位置\(b\),你每次可以向左或者向右移动一个单位,或者选择不动并在原地放一个爆竹\(i\),爆竹\(i\)在\(s[i]\)秒后爆炸, ...

  6. Codeforces Round #579 (Div. 3) B Equal Rectangles、C. Common Divisors

    B Equal Rectangles 题意: 给你4*n个数,让你判断能不能用这个4*n个数为边凑成n个矩形,使的每个矩形面积相等 题解: 原本是想着用二分来找出来那个最终的面积,但是仔细想一想,那个 ...

  7. PowerShell随笔5---添加.NET类型

    有些情况下,有些脚本命令不能满足我们的需求,而手头却能用C#很方便的实现. 我们就可以把自定义的类型Add到PowerShell中使用,使用方法和PowerShell调用.NET类库方法是一样的. 以 ...

  8. 流媒体传输协议之 RTP (上篇)

    本系列文章将整理各个流媒体传输协议,包括 RTP/RTCP,RTMP,希望通过深入梳理协议的设计细节,能够给流媒体领域的开发者带来一定的启发. 作者:逸殊 审核:泰一 介绍 RTP,即 real-ti ...

  9. Redis 事务 & 消息队列

    Redis 消息队列介绍 什么是消息队列 消息队列(Message Queue)是一种应用间的通信方式,消息发送后可以立即返回,有消息系统来确保信息的可靠传递,消息生产者只管把消息发布到消息队列中而不 ...

  10. Atlas 分表功能

    目录 分表原因 分表方式 Atlas 分表 分表思路 配置 Atlas 创建原表 创建分表 数据测试 分表原因 1.数据过多,访问缓慢 2.创建索引时重新排序,创建缓慢,并且占用大量的磁盘空间 分表方 ...