HDOJ-3416(最大流+最短路+ISAP算法+向前星dijikstra算法+如何判断一条边是否在最短路中)
Marriage Match IV
HDOJ-3416
- 这题的题意就是要找两点之间最短路的路径个数,而且边不能重复。
- 最大流和最短路的结合。首先正向和反向建图,再跑两遍dijikstra。到这里就求出来起点到某一点的最短路以及某一点到终点的最短路。
- 还有一个关键的公式就是如何判断一条边是否在最短路中:如果起点到该边的起点的最短距离加上该边的终点到终点的最短距离再加上该边的长度等于起点到终点的最短路,那该边就在最短路中。
- 还有一个需要注意的地方就是最大流算法的选用,如果需用EK算法,时间复杂度和边数成2次方关系。所以,这里选用ISAP高级算法。但也给出EK算法的求解过程。
ISAP算法
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int INF=0X3F3F3F3F;
const int maxn=1003;
const int maxm=100005;
int n,m;
int map[maxn][maxn];
int d[2][maxn];//最短路
int st,ed;
struct Edge {
int from, to, cap, flow;
Edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {}
};
bool operator<(const Edge& a, const Edge& b) {
return a.from < b.from || (a.from == b.from && a.to < b.to);
}
struct ISAP {
int n, m, s, t;
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
int p[maxn];
int num[maxn];
void AddEdge(int from, int to, int cap) {
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(t);
vis[t] = 1;
d[t] = 0;
while (!Q.empty()) {
int x = Q.front();
Q.pop();
for (int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i] ^ 1];
if (!vis[e.from] && e.cap > e.flow) {
vis[e.from] = 1;
d[e.from] = d[x] + 1;
Q.push(e.from);
}
}
}
return vis[s];
}
void init(int n) {
this->n = n;
for (int i = 0; i < n; i++) G[i].clear();
edges.clear();
}
int Augment() {
int x = t, a = INF;
while (x != s) {
Edge& e = edges[p[x]];
a = min(a, e.cap - e.flow);
x = edges[p[x]].from;
}
x = t;
while (x != s) {
edges[p[x]].flow += a;
edges[p[x] ^ 1].flow -= a;
x = edges[p[x]].from;
}
return a;
}
int Maxflow(int s, int t) {
this->s = s;
this->t = t;
int flow = 0;
BFS();
memset(num, 0, sizeof(num));
for (int i = 0; i < n; i++) num[d[i]]++;
int x = s;
memset(cur, 0, sizeof(cur));
while (d[s] < n) {
if (x == t) {
flow += Augment();
x = s;
}
int ok = 0;
for (int i = cur[x]; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if (e.cap > e.flow && d[x] == d[e.to] + 1) {
ok = 1;
p[e.to] = G[x][i];
cur[x] = i;
x = e.to;
break;
}
}
if (!ok) {
int m = n - 1;
for (int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if (e.cap > e.flow) m = min(m, d[e.to]);
}
if (--num[d[x]] == 0) break;
num[d[x] = m + 1]++;
cur[x] = 0;
if (x != s) x = edges[p[x]].from;
}
}
return flow;
}
}ek;
struct edge{
int to;
int cost;
int next;
};
int head[maxn];
int heads[maxn];
edge ma[maxm];
edge mas[maxm];
struct node{
int dis;
int to;
bool operator<(const node& t)const{
return dis>t.dis;
}
};
void dijikstra(int s,int f,int *head,edge ma[]){
for(int i=1;i<=n;i++){
d[f][i]=INF;
}
d[f][s]=0;
priority_queue<node> q;
q.push({0,s});
while(!q.empty()){
node now=q.top();
q.pop();
int v=now.to;
int dis=now.dis;
if(d[f][v]<dis){
continue;
}
for(int i=head[v];i!=-1;i=ma[i].next){
int u=ma[i].to;
//cout<<u<<endl;
int cost=ma[i].cost;
if(d[f][u]>d[f][v]+cost){
d[f][u]=d[f][v]+cost;
q.push({d[f][u],u});
}
}
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin>>t;
while(t--){
cin>>n>>m;
memset(head,-1,sizeof(head));
memset(heads,-1,sizeof(heads));
for(int i=0;i<m;i++){
int a,b,c;
cin>>a>>b>>c;
if(a==b)
continue;
ma[i].to=b;
ma[i].cost=c;
ma[i].next=head[a];
head[a]=i;
mas[i].to=a;
mas[i].cost=c;
mas[i].next=heads[b];
heads[b]=i;
}
cin>>st>>ed;
dijikstra(st,0,head,ma);
dijikstra(ed,1,heads,mas);
//cout<<d[0][ed]<<endl;
//cout<<d[1][st]<<endl;
int final=d[0][ed];
if(final==INF){
cout<<0<<endl;
continue;
}
ek.init(n);
for(int i=1;i<=n;i++){
for(int j=head[i];j!=-1;j=ma[j].next){
if(d[0][i]+d[1][ma[j].to]+ma[j].cost==final)
ek.AddEdge(i,ma[j].to,1);
}
}
cout<<ek.Maxflow(st,ed)<<endl;
}
return 0;
}
EK算法
struct edge{
int to;
int cost;
int next;
};
int head[maxn];
int heads[maxn];
edge ma[maxm];
edge mas[maxm];
struct node{
int dis;
int to;
bool operator<(const node& t)const{
return dis>t.dis;
}
};
void dijikstra(int s,int f,int *head,edge ma[]){
for(int i=1;i<=n;i++){
d[f][i]=INF;
}
d[f][s]=0;
priority_queue<node> q;
q.push({0,s});
while(!q.empty()){
node now=q.top();
q.pop();
int v=now.to;
int dis=now.dis;
if(d[f][v]<dis){
continue;
}
for(int i=head[v];i!=-1;i=ma[i].next){
int u=ma[i].to;
//cout<<u<<endl;
int cost=ma[i].cost;
if(d[f][u]>d[f][v]+cost){
d[f][u]=d[f][v]+cost;
q.push({d[f][u],u});
}
}
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin>>t;
while(t--){
cin>>n>>m;
memset(head,-1,sizeof(head));
memset(heads,-1,sizeof(heads));
for(int i=0;i<m;i++){
int a,b,c;
cin>>a>>b>>c;
if(a==b)
continue;
ma[i].to=b;
ma[i].cost=c;
ma[i].next=head[a];
head[a]=i;
mas[i].to=a;
mas[i].cost=c;
mas[i].next=heads[b];
heads[b]=i;
}
cin>>st>>ed;
dijikstra(st,0,head,ma);
dijikstra(ed,1,heads,mas);
//cout<<d[0][ed]<<endl;
//cout<<d[1][st]<<endl;
int final=d[0][ed];
if(final==INF){
cout<<0<<endl;
continue;
}
ek.init(n);
for(int i=1;i<=n;i++){
for(int j=head[i];j!=-1;j=ma[j].next){
if(d[0][i]+d[1][ma[j].to]+ma[j].cost==final)
ek.AddEdge(i,ma[j].to,1);
}
}
cout<<ek.Maxflow(st,ed)<<endl;
}
return 0;
}
HDOJ-3416(最大流+最短路+ISAP算法+向前星dijikstra算法+如何判断一条边是否在最短路中)的更多相关文章
- 模板——最小生成树prim算法&&向前星理解
通过最小生成树(prim)和最短路径优化引出的向前星存图,时至今日才彻底明白了.. head[i]存储的是父节点为i引出的最后一条边的编号, next负责把head[i]也就是i作为父节点的所有边连接 ...
- 笔试算法题(19):判断两条单向链表的公共节点 & 字符集删除函数
出题:给定两个单向链表的头结点,判断其是否有公共节点并确定第一个公共节点的索引: 分析: 由于是单向链表,所以每个节点有且仅有一个后续节点,所以只可能是Y型交叉(每条链表中的某个节点同时指向一个公共节 ...
- HDU 3416 Marriage Match IV(ISAP+最短路)题解
题意:从A走到B,有最短路,问这样不重复的最短路有几条 思路:先来讲选有效边,我们从start和end各跑一次最短路,得到dis1和dis2数组,如果dis1[u] + dis2[v] + cost[ ...
- poj-1459-最大流dinic+链式前向星-isap+bfs+stack
title: poj-1459-最大流dinic+链式前向星-isap+bfs+stack date: 2018-11-22 20:57:54 tags: acm 刷题 categories: ACM ...
- 【模板】 最大流模板(ISAP)
题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行 ...
- 最大流算法之Ford-Fulkerson算法与Edmonds–Karp算法
引子 曾经很多次看过最大流的模板,基础概念什么的也看了很多遍.也曾经用过强者同学的板子,然而却一直不会网络流.虽然曾经尝试过写,然而即使最简单的一种算法也没有写成功过,然后对着强者大神的代码一点一点的 ...
- coding++:RateLimiter 限流算法之漏桶算法、令牌桶算法--简介
RateLimiter是Guava的concurrent包下的一个用于限制访问频率的类 <dependency> <groupId>com.google.guava</g ...
- 【算法•日更•第三十五期】FF算法优化:EK算法
▎写在前面 FF算法传送门 之前我们已经学过了FF算法(全称Ford-Fulkerson算法)来找最大流,但是这种算法仍有诸多不对的地方. 其实这种算法存在着严重的效率的问题,请看下面的图: 以这个图 ...
- 最短路径算法之二——Dijkstra算法
Dijkstra算法 Dijkstra算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 注意该算法要求图中不存在负权边. 首先我们来定义一个二维数组Edge[MAXN][MAXN]来存储 ...
随机推荐
- Codeforces Round #608 (Div. 2) E. Common Number (二分,构造)
题意:对于一个数\(x\),有函数\(f(x)\),如果它是偶数,则\(x/=2\),否则\(x-=1\),不断重复这个过程,直到\(x-1\),我们记\(x\)到\(1\)的这个过程为\(path( ...
- 2019牛客暑期多校训练营(第三场)B题、H题
传送门 题意: 就是说给你一个由0或1组成的字符串,让你找出来一个0的数量和1的数量相等的最长子字符串和最长子序列 题解: 可以把0当作-1,把1当作1来计算字符串的前缀和 这样的话,当两个位置的前缀 ...
- Educational Codeforces Round 96 (Rated for Div. 2) E. String Reversal (思维,逆序对)
题意:给你一个字符串,每次可以调换现字符串的相邻两个字符,问最少操作多少次使得这个字符串等于其反转过来的字符串. 题解:先考虑字符串中没有相同字符的情况,那么我们每次将目前字符串的最后一个字符一直调换 ...
- Windows Server 2016 开启远程连接并延长过期时间
按照下面文章配置,做完1.2步即可,其中协议号码填写 4954438 亲测有效! Server 2016默认远程桌面连接数是2个用户,如果多余两个用户进行远程桌面连接时,系统就会提示超过连接数,可以通 ...
- Linux-输出/输入重定向
目录 重定向的分类 输出重定向 将标准输出重定向到文件 将标准输出追加重定向到文件 将错误输出重定向到文件 将标准输出和错误输出都重定向到文件 将错误输出重定向到黑洞文件 输入重定向 重定向的分类 名 ...
- KafkaConsumer 简析
使用方式 创建一个 KafkaConsumer 对象订阅主题并开始接收消息: Properties properties = new Properties(); properties.setPrope ...
- woj1018(HDU4384)KING KONG 循环群
title: woj1018(HDU4384)KING KONG 循环群 date: 2020-03-19 09:43:00 categories: [acm] tags: [acm,woj,数学] ...
- C++程序代码优化的方法
1.选择合适的算法和数据结构 选择一种合适的数据结构很重要,如果在一堆随机存放的数中使用了大量的插入和删除指令,那使用链表要快得多.数组与指针语句具有十分密切的关系,一般来说,指针比较灵活简洁,而数组 ...
- 全局ID生成--雪花算法
分布式ID常见生成策略: 分布式ID生成策略常见的有如下几种: 数据库自增ID. UUID生成. Redis的原子自增方式. 数据库水平拆分,设置初始值和相同的自增步长. 批量申请自增ID. 雪花算法 ...
- Principle for iOS App Animation Design
Principle for iOS App Animation Design Animate Your Ideas, Design Better Apps https://principleforma ...