APIO2019 题解
APIO2019 题解
T1 奇怪装置
题目传送门
题解
很容易发现,这个东西一定会形成一个环。我们只需要求出环的长度就解决了一切问题。
设环的长度为 \(l\)。那么从 \((0, 0)\) 出发,走 \(l\) 步一定可以再次回到 \((0, 0)\)。
也就是说
\[
\left\{
\begin{align*}
& A \mid l + \lfloor \frac lB \rfloor\\
& B \mid l
\end{align*}
\right.
\]
所以 \(\lfloor \frac lB \rfloor = \frac lB\)。因此设 \(x = \frac lB\),则 \(l = xB\),则 \(A \mid x(B + 1)\)。
所以 \(x = \frac{\operatorname{lcm}(A, B + 1)}{A(B + 1)}\),\(l = xB = \frac{\operatorname{lcm}(A, B + 1)B}{A(B + 1)}\)。
有了 \(l\) 之后就是求区间的并的大小了。这个东西可以直接排序一遍就可以了。
代码
https://loj.ac/submission/688026
T2 桥梁
题目传送门
题解
先考虑这样一种做法:
首先如果我们暴力把当前的所有点权大于等于 \(w_j\) 的边加入并查集,那么这次询问的答案就是 \(s_j\) 所在并查集的大小。
这样是 \(O(Qm)\) 的。
想要把这个暴力改的稍微优雅一点可以这样:
先找出所有没有被修改过的边加入并查集。
对于每一次询问,枚举所有修改,对于在它之前最后一次修改这条边的一次修改,如果修改后的权值大于等于 \(w_j\) 就加入并查集。这里的并查集需要回退。
这样的时间复杂度变成了 \(O(m\log m + Q^2\log m)\)。
我们发现,这样做涉及到的边只有询问的边。我们是不是可以每隔几次询问就暴力重构一遍来保证目前没有被重构的询问尽量少呢?这样做可以看成把询问分成很多块。
如果采用这样的策略,那么我们每一次询问只需要遍历这一块内的修改即可。
那么这样的时间复杂度就是 \(O(\frac{Qm\log m}B + QB)\)。
当 \(B = \sqrt{m\log m}\) 时最优。
这样的时间复杂度就是 \(O(Q\sqrt{m\log m})\)。
代码
https://loj.ac/submission/688889
T3 路灯
题目传送门
题解
对于每个点 \(x\) 维护其所在段的右边界 \(r_x\)。那么从 \(a\) 能够到达 \(b\) 当且仅当 \(r_a \geq b\)。
可以用树套树维护 \(r_i\)。对于一次 toggle 操作,不管是点亮还是熄灭,影响到的 \(r_i\) 都只有这个区间的修改点 \(x\) 左边的部分,内容是把它们的 \(r\) 修改成 \(x\) 或者从 \(x\) 修改成一个更大的。
同时,可以发现,一个路段在 \(i\) 时刻通了,那么它可以带来贡献 \(q - i\) 的时间。如果在 \(j\) 时刻断了,那么它带来了 \(q - i\) 的负贡献。我们只需要维护这个这个东西就可以了。
所以树套树的第一维是 \(i\),第二维是 \(r_i\),存储的是 \(r_i\) 变成 \(j\) 的贡献。但是需要特判的是,如果查询的时候路段处于联通状态,那么需要从总贡献中扣除 \(q - now\)。
听说还可以用 cdq 分治维护,应该也是差不多的做法了。
代码
https://loj.ac/submission/688370
APIO2019 题解的更多相关文章
- APIO2019题解
T1.桥梁(bridges/restriction) Subtask1:暴力,$O(n^2)$. #include<cstdio> #include<algorithm> #d ...
- APIO2019简要题解
Luogu P5444 [APIO2019]奇怪装置 看到这种题,我们肯定会想到\((x,y)\)一定有循环 我们要找到循环节的长度 推一下发现\(x\)的循环节长为\(\frac{AB}{B+1}\ ...
- 题解-APIO2019路灯
problem \(\mathtt {loj-3146}\) 题意概要:一条直线上有 \(n+1\) 个点和 \(n\) 条道路,每条道路连通相邻两个点.在 \(q\) 个时刻内,每个时刻有如下两种操 ...
- 题解-APIO2019桥梁
problem \(\mathrm {loj-3145}\) 题意概要:给定一张 \(n\) 点 \(m\) 边的无向图,边有边权,共 \(q\) 次操作,每次会将第 \(x\) 条边的权值改为 \( ...
- 题解-APIO2019奇怪装置
problem loj-3144 题意概要:设函数 \(f(t)\) 的返回值为一个二元组,即 \(f(t)=((t+\lfloor \frac tB\rfloor)\bmod A, t\bmod B ...
- 题解 洛谷 P5443 【[APIO2019]桥梁】
考虑若只有查询操作,那么就可以构造\(Kruskal\)重构树,然后在线询问了,也可以更简单的把询问离线,把询问和边都按权值从大到小排序,然后双指针依次加入对于当前询问合法的边,用并查集维护每个点的答 ...
- 【LOJ#3146】[APIO2019]路灯(树套树)
[LOJ#3146][APIO2019]路灯(树套树) 题面 LOJ 题解 考场上因为\(\text{bridge}\)某个\(\text{subtask}\)没有判\(n=1\)的情况导致我卡了\( ...
- 【LOJ#3145】[APIO2019]桥梁(分块,并查集)
[LOJ#3145][APIO2019]桥梁(分块,并查集) 题面 LOJ 题解 因为某个\(\text{subtask}\)没判\(n=1\)的情况导致我自闭了很久的题目... 如果没有修改操作,可 ...
- 【LOJ#3144】[APIO2019]奇怪装置(数论)
[LOJ#3144][APIO2019]奇怪装置(数论) 题面 LOJ 题解 突然发现\(LOJ\)上有\(APIO\)的题啦,赶快来做一做. 这题是窝考场上切了的题嗷.写完暴力之后再推了推就推出正解 ...
随机推荐
- tensorflow源码分析——LSTMCell
LSTMCell 是最简单的LSTMCell,源码位于:/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py.LSTMCell 继承了RNN ...
- zabbix 监控安装部署
今天尝试一下部署zabbix 官方文档包括多个版本,此处选择4.0版本 https://www.zabbix.com/documentation/4.0/manual 1.安装环境选择 zabbix4 ...
- ObjectDataSource.ObjectCreating 事件
ObjectCreating 事件在创建由 TypeName 属性标识的对象之前发生. 命名空间:System.Web.UI.WebControls程序集:System.Web(在 system.we ...
- leetcode 206 反转链表 Reverse Linked List
C++解法一:迭代法,使用前驱指针pre,当前指针cur,临时后继指针nxt: /** * Definition for singly-linked list. * struct ListNode { ...
- python - Tkinter 模块 - python 自带的gui模块
Tkinter模块("Tk 接口")是Python的标准Tk GUI工具包的接口,位Python的内置模块,直接import tkinter即可使用. 1.创建窗口 from Tk ...
- ES6中变量的解构赋值
1.数组的解构赋值 基本用法 ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构(Destructuring). 输出: 上面代码表示,可以从数组中提取值,按照对应位置,对变 ...
- CentOS6.5 编译安装PHP5.6(apache模块)
一.环境准备 1. 下载php源码包 # wget http://cn2.php.net/distributions/php-5.6.30.tar.gz # tar -xf php-5.6.30.ta ...
- tensorflow2.0 numpy.ndarray 与tenor直接互转
1.代码参考 import numpy as npimport tensorflow as tf a = np.random.random((5,3)) b = np.random.randint(0 ...
- C#中的委托和事件(一)——delegate
前言 来说一说委托(delegate)和事件(event),本篇采取的形式是翻译微软Delegate的docs中的重要部分(不要问我为什么微软的docs有中文还要读英文,因为读中文感觉自己有阅读障碍- ...
- 1000行MySQL学习笔记
/* 启动MySQL */ net start mysql /* 连接与断开服务器 */ mysql -h 地址 -P 端口 -u 用户名 -p 密码 /* 跳过权限验证登录MySQL */ mysq ...