FWT也称快速沃尔什变换,是用来求多项式之间位运算的系数的。FWT的思想与FFT有异曲同工之妙,但较FFT来说,FWT比较简单。

前言


之前学习FFT(快速傅里叶变换)的时候,我们知道FFT是用来快速求两个多项式乘积的,即求序列C:

$$C_k=\sum_{i+j=k}A_iB_j$$

而FWT解决的多项式的位运算,即知道两个序列A与B,求:

$$C_k=\sum_{i\&j=k}A_iB_j\;\;(\& 表示位运算"与")$$

$$C_k=\sum_{i|j=k}A_iB_j\;\;(| 表示位运算"或")$$

$$C_k=\sum_{i\land j=k}A_iB_j\;\;(\land 表示位运算"异或")$$

如图FFT的解决方法,在FWT中,我们需要找到一种线性变换$FWT$,使得原序列$A$变成一个新的序列$FWT(A)$,新序列与由原序列线性相关

注意,由于FWT变换是一种线性变换,所以一定满足

$$FWT(A)+FWT(B)=FWT(A+B)$$

与FFT一样,我么需要把序列用0补成2的幂次方个,然后分割成序列为2的区间,然后更新数值,再合并,再一段段更新,再合并....直到最后合并成一个序列,然后进行最后一次更新即可得到变换后的序列。


FWT_OR


已知两个序列A,B,求新的序列C,其中

$$C=\left\{\sum_{i|j=0}A_iB_j,\sum_{i|j=1}A_iB_j,\sum_{i|j=2}A_iB_j,...\right\}$$

$$C_k=\sum_{i|j=k}A_iB_j$$

假设序列为$A$,前一半元素(前$2^{n-1}$个)元素组成的序列为$A_0$,后一半元素(后$2^{n-1}$个)元素组成的序列为$A_1$,故$A=(A_0,A_1)$

若序列A的长度为$2^n$,更新方法:

$$FWT(A)=\begin{cases}A&n=0\\(FWT(A_0),FWT(A_0)+FWT(A_1))&n>0\end{cases}$$

","表示合并前后两个序列。

此时可以证明$$FWT(C)=FWT(A|B)=FWT(A)*FWT(B)$$

借某位大佬的证明方法:

$FWT(A|B)=FWT((A|B)_0,(A|B)_1)$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =FWT(A_0|B_0,A0|B_1+A_1|B0+A_1|B_1)$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(FWT(A_0|B_0),FWT(A_0|B_0+A_0|B_1+A_1|B_0+A_1|B_1))$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(FWT(A_0)×FWT(B_0),$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ FWT(A_0)×FWT(B_0)+FWT(A_0)×FWT(B_1)+$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ FWT(A_1)×FWT(B_0)+FWT(A_1)×FWT(B_1))$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(FWT(A_0)×FWT(B_0),(FWT(A_0)+FWT(A_1))×$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (FWT(B_0)+FWT(B_1)))$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(FWT(A_0),FWT(A_0+A_1))×(FWT(B_0),FWT(B_0+B_1))$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =FWT(A)×FWT(B)$

然后对FWT(C)序列进行FWT逆变换(UFWT)即可得到C序列。

逆变换的更新方法可以根据正变换的形式得到,为

$$UFWT(A)=(UFWT(A_0),UFWT(A_1)-UFWT(A_0))$$

FWT或变换代码:

typedef long long ll;
void FWT_or(ll *a,int n){
for(int i=;i<=n;i<<=)//i表示分治的区间
for(int p=i>>,j=;j<n;j+=i)//p表示区间的一半,j表示区间开头
for(int k=j;k<j+p;++k)//k来遍历每一个区间的前半部分
a[k+p]+=a[k];//更新
return;
}

UFWT或变换代码:

typedef long long ll;
void UFWT_or(ll *a,int n){
for(int i=;i<=n;i<<=)
for(int p=i>>,j=;j<n;j+=i)
for(int k=j;k<j+p;++k)
a[k+p]-=a[k];
return;
}

合并代码:

void FWT_or(ll *a,int n,int opt){
for(int i=;i<=n;i<<=)
for(int p=i>>,j=;j<n;j+=i)
for(int k=j;k<j+p;++k)
a[k+p]+=a[k]*opt;
return;
}

U/FWT_or


FWT_AND


已知两个序列A,B,求新的序列C,其中

$$C=\left\{\sum_{i\&j=0}A_iB_j,\sum_{i\&j=1}A_iB_j,\sum_{i\&j=2}A_iB_j,...\right\}$$

$$C_k=\sum_{i\&j=k}A_iB_j$$

假设序列为$A$,前一半元素(前$2^{n-1}$个)元素组成的序列为$A_0$,后一半元素(后$2^{n-1}$个)元素组成的序列为$A_1$,故$A=(A_0,A_1)$

若序列A的长度为$2^n$,更新方法:

$$FWT(A)=\begin{cases}A&n=0\\(FWT(A_0)+FWT(A_1),FWT(A_1))&n>0\end{cases}$$

","表示合并前后两个序列。

此时也可以证明$$FWT(C)=FWT(A\&B)=FWT(A)*FWT(B)$$

证明方法:

$FWT(A\&B)=FWT((A\&B)_0,(A\&B)_1)$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =FWT(A_0\&B_0+A_0\&B_1+A_1\&B_0,A_1\&B_1)$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(FWT(A_0\&B_0+A_0\&B_1+A_1\&B_0+A_1\&B_1),FWT(A_1\&B_1))$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =((FWT(A0)+FWT(A1))×(FWT(B0)+FWT(B1)),FWT(A1)∗FWT(B1))$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(FWT(A0+A1),FWT(A1))×(FWT(B0+B1),FWT(B1))$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =FWT(A)×FWT(B)$

然后对FWT(C)序列进行FWT逆变换(UFWT)即可得到C序列。

 

逆变换的更新方法可以根据正变换的形式得到,为

$$UFWT(A)=(UFWT(A_0)-UFWT(A_1),UFWT(A_1))$$

FWT与变换代码:

void FWT_and(ll *a,int n){
for(int i=;i<=n;i<<=)
for(int p=i>>,j=;j<n;j+=i)
for(int k=j;k<j+p;++k)
a[k]+=a[k+p];
return;
}

UFWT或变换代码:

void UFWT_and(ll *a,int n){
for(int i=;i<=n;i<<=)
for(int p=i>>,j=;j<n;j+=i)
for(int k=j;k<j+p;++k)
a[k]-=a[k+p];
return;
}

合并代码:

void FWT_and(ll *a,int n,int opt){
for(int i=;i<=n;i<<=)
for(int p=i>>,j=;j<n;j+=i)
for(int k=j;k<j+p;++k)
a[k]+=a[k+p]*opt;
return;
}

U/FWT_and


FWT_XOR


已知两个序列A,B,求新的序列C,其中

$$C=\left\{\sum_{i\oplus j=0}A_iB_j,\sum_{i\oplus j=1}A_iB_j,\sum_{i\oplus j=2}A_iB_j,...\right\}$$

$$C_k=\sum_{i\oplus j=k}A_iB_j$$

假设序列为$A$,前一半元素(前$2^{n-1}$个)元素组成的序列为$A_0$,后一半元素(后$2^{n-1}$个)元素组成的序列为$A_1$,故$A=(A_0,A_1)$

若序列A的长度为$2^n$,更新方法:

$$FWT(A)=\begin{cases}A&n=0\\(FWT(A_0)+FWT(A_1),FWT(A_0)-FWT(A_1))&n>0\end{cases}$$

","表示合并前后两个序列。

此时仍然可以证明$$FWT(C)=FWT(A\oplus B)=FWT(A)*FWT(B)$$

证明方法:

$FWT(A⊕B)=(FWT(A⊕B)_0+FWT(A⊕B)_1,FWT(A⊕B)_0−FWT(A⊕B)_1)$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(FWT(A_0⊕B_0+A_1⊕B_1+A_1⊕B_0+A_0⊕B_1),$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ FWT(A_0⊕B_0+A_1⊕B_1−A_1⊕B_0−A_0⊕B_1))$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =((FWT(A_0)+FWT(A_1))×(FWT(B_0)+FWT(B_1)),$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (FWT(A_0)−FWT(A_1))×(FWT(B_0)−FWT(B_1))$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(FWT(A_0+A_1)×(B_0+B_1),FWT(A_0−A_1)×FWT(B_0−B_1))$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(FWT(A_0+A_1),FWT(A_0−A_1))×(FWT(B_0+B_1),FWT(B_0−B_1))$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =FWT(A)×FWT(B)$

然后对FWT(C)序列进行FWT逆变换(UFWT)即可得到C序列。

逆变换的更新方法可以根据正变换的形式得到,为

$$UFWT(A)=(\frac {UFWT(A_0)+UFWT(A_1)}2,\frac {UFWT(A_0)-UFWT(A_1)}2)$$

FWT异或变换代码:

void FWT_xor(ll *a,int n){
for(int i=;i<=n;i<<=)
for(int p=i>>,j=;j<n;j+=i)
for(int k=j;k<j+p;++k){
ll x=a[k],y=a[k+p];
a[k]=x+y;a[k+p]=x-y;
}
return ;
}

UFWT变换代码:

void UFWT_xor(ll *a,int n){
for(int i=;i<=n;i<<=)
for(int p=i>>,j=;j<n;j+=i)
for(int k=j;k<j+p;++k){
ll x=a[k],y=a[k+p];
a[k]=(x+y)/,a[k+p]=(x-y)/;
}
return ;
}

合并代码:

void FWT_xor(ll *a,int n,int opt){
for(int i=;i<=n;i<<=)
for(int p=i>>,j=;j<n;j+=i)
for(int k=j;k<j+p;++k){
ll x=a[k],y=a[k+p];
if(opt==) a[k]=x+y;a[k+p]=x-y;
else a[k]=(x+y)/,a[k+p]=(x-y)/;
}
return ;
}

U/FWT_xor


FWT异或变换的特殊作用


在FWT异或变换中,我们主要解决一个问题

$$h(i)=\sum_{j\oplus k=i}f(j)g(k)$$

根据某站某大佬的讲解,假设存在三个集合$L,R,S$满足

$$h(S)=\sum_{R\oplus L=i}f(R)g(L)$$

则为了解决快速多项式异或,我们需要将上面的式子变形。

首先介绍一个等式,假设全集为U,集合内有n个元素,其中$|T|$表示集合T的大小,则

$$\frac 1{2^n}\sum_{T\subseteq U}(-1)^{|W\cap T|}=1$$

上面的式子仅在$W=\varnothing$时成立

解释一下:由于集合$T$是集合$U$的子集,故集合$T$有$2^n$中可能,一旦$W$不是空集,$(-1)^{|W\cap T|}$就可能等于1,那么$\sum_{T\subseteq U}(-1)^{|W\cap T|}$就会小于$2^n$。所以只有当$W$是空集时,上面式子才等于1

有了上面的等式,就可以变形了,由于$R\oplus L=S$,故$R\oplus L\oplus S=\varnothing$

$$h(S)=\sum_{R\oplus L=i}f(R)g(L)$$

$$=\sum_{R\subseteq U}\sum_{L\subseteq U}[R\oplus L\oplus S=\varnothing]f(L)g(R)$$

$$=\sum_{R\subseteq U}\sum_{L\subseteq U}\frac 1{2^n}\sum_{T\subseteq U}(-1)^{|R\oplus L\oplus S\cap T|}f(L)g(R)$$

下面证明$|T\cap \oplus^{n}_{i=1}S_i|$与$\sum_{i=1}^n|S_i\cap T|$的奇偶性相同,先证明n=2的情况:

假设$|T\cap S_1|=A,|T\cap S_2|=B$

1.假设$T\cap S_1$与$T\cap S_2$没有相同位的数相同,那么:

$$(-1)^{\sum_{i=1}^2|S_i\cap T|}=(-1)^{|S_1\cap T|+|S_2\cap T|}=(-1)^{A+B}=(-1)^{|T\cap (S_1\oplus S_2)|}$$

2.假设$T\cap S_1$与$T\cap S_2$有x组相同位的数相同,那么:

$$(-1)^{\sum_{i=1}^2|S_i\cap T|}=(-1)^{|S_1\cap T|+|S_2\cap T|}=(-1)^{A+B}$$$$(-1)^{|T\cap (\oplus_{i=1}^2S_i)|}=(-1)^{|T\cap (S_1\oplus S_2)|}=(-1)^{A+B-2x}=(-1)^{A+B}$$

当然n等于任何数的时候也是像上面一样可以证明的,所以$$(-1)^{|R\oplus L\oplus S\cap T|}=(-1)^{|R\cap T|+|S\cap T|+|L\cap T|}$$

故上面式子继续变形可得

$$\frac 1{2^n}\sum_{L\subseteq U}\sum_{R\subseteq U}\sum_{T\subseteq U}(-1)^{|L\cap T|}(-1)^{|R\cap T|}(-1)^{|S\cap T|}f(R)g(L)$$

于是发现了FWT_xor变形的本质,即变形后的序列$f(T)$与变形前序列$f(R)$的关系

$$f(T)=\sum_{R\subseteq U}(-1)^{|R\cap T|}f(R)$$

通过以上的探究,得到结论:假设原序列为A,变形后的序列为A',那么

$$A'[x]=\sum_{|x\&i|\bmod {2}=0}A[i]-\sum_{|x\&i|\bmod {2}\neq 0}A[i]$$


例题


1.2019牛客暑期多校训练营(第一场)----D-Parity of Tuples:https://blog.csdn.net/weixin_43702895/article/details/97114770

学习:多项式算法----FWT的更多相关文章

  1. 数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群)

    数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的 ...

  2. [置顶] 小白学习KM算法详细总结--附上模板题hdu2255

    KM算法是基于匈牙利算法求最大或最小权值的完备匹配 关于KM不知道看了多久,每次都不能完全理解,今天花了很久的时间做个总结,归纳以及结合别人的总结给出自己的理解,希望自己以后来看能一目了然,也希望对刚 ...

  3. 学习cordic算法所得(流水线结构、Verilog标准)

    最近学习cordic算法,并利用FPGA实现,在整个学习过程中,对cordic算法原理.FPGA中流水线设计.Verilog标准有了更加深刻的理解. 首先,cordic算法的基本思想是通过一系列固定的 ...

  4. 学习排序算法(一):单文档方法 Pointwise

    学习排序算法(一):单文档方法 Pointwise 1. 基本思想 这样的方法主要是将搜索结果的文档变为特征向量,然后将排序问题转化成了机器学习中的常规的分类问题,并且是个多类分类问题. 2. 方法流 ...

  5. 从 SGD 到 Adam —— 深度学习优化算法概览(一) 重点

    https://zhuanlan.zhihu.com/p/32626442 骆梁宸 paper插画师:poster设计师:oral slides制作人 445 人赞同了该文章 楔子 前些日在写计算数学 ...

  6. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  7. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  8. 学习:多项式算法----FFT

    FFT,即快速傅里叶变换,是离散傅里叶变换的快速方法,可以在很低复杂度内解决多项式乘积的问题(两个序列的卷积) 卷积 卷积通俗来说就一个公式(本人觉得卷积不重要) $$C_k=\sum_{i+j=k} ...

  9. 浅谈算法——FWT(快速沃尔什变换)

    其实FWT我啥都不会,反正就是记一波结论,记住就好-- 具体证明的话,推荐博客:FWT快速沃尔什变换学习笔记 现有一些卷积,形如 \(C_k=\sum\limits_{i\lor j=k}A_i*B_ ...

随机推荐

  1. 正在连接localhost...无法打开到主机的连接。 在port 8080: 连接失败

      在cmd中用telnet连接tomcat,出现了"正在连接localhost...无法打开到主机的连接. 在port 8080: 连接失败"原因是我的tomcat是绿色版的,没 ...

  2. neo4j 的cql 语句,增、删、改、查(条件查询)(持续更新)

    前言 因为做一个比赛的项目 ,需要用到 neo4j 数据库,所以要学习其语言cql,特来整理一下他的基本语言. 整片的语句是按照 了 Neo4j 数据库自带的示例 Movie Graph 来写的. 直 ...

  3. opencv配置经常遇到的错误

    我们在运行一些书上的例子,经常会遇到以下的错误 还有什么Assertion Failed错误.这些错误都是我运行浅墨书上的例子或者博客的例子上面的代码的错误,他自己也提了一下,但是说的不是特别的清楚, ...

  4. AOS and clustering

    原文转载:http://sjakalax.blogspot.com/2010/10/aos-and-clustering.html AOS and clustering   hi,   There s ...

  5. 自定义、操作cookie

    /** * 读取所有cookie * 注意二.从客户端读取Cookie时,包括maxAge在内的其他属性都是不可读的,也不会被提交.浏览器提交Cookie时只会提交name与value属性.maxAg ...

  6. rocketmq-console控制台管理界面配置

    Rocketmq可视化管理控制台配置 前提: RocketMQ有一个对其扩展的开源项目incubator-rocketmq-externals,这个项目中有一个子模块叫“rocketmq-consol ...

  7. console.log 不起作用

    devtool console.log 突然不起作用了

  8. css:鼠标点击出现有颜色的边框?如何解决

    今天遇到上图这样出现有颜色的边框 解决办法: css设置属性 outline:none;

  9. php内置函数分析之strrev()

    PHP_FUNCTION(strrev) { zend_string *str; char *e, *p; zend_string *n; if (zend_parse_parameters(ZEND ...

  10. php 调用远程url

    // ; Whether to allow the treatment of URLs (like http:// or ftp://) as files. // ; http://php.net/a ...