bzoj2705: [SDOI2012]Longge的问题 欧拉定理
题意:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。
题解:考虑n的所有因子,假设有因子k,那么对答案的贡献gcd(i,n)k的个数即gcd(i/k,n/k)1的个数即n/k的欧拉函数,答案就是∑(k|n)k*φ(n/k)
枚举n的因子复杂度O(sqrt(n)),单次求欧拉函数复杂度O(sqrt(n)),复杂度O(n),但是实际跑起来比O(n)小很多
/**************************************************************
Problem: 2705
User: walfy
Language: C++
Result: Accepted
Time:56 ms
Memory:1288 kb
****************************************************************/
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0)
using namespace std;
const double g=10.0,eps=1e-12;
const int N=100000+10,maxn=1000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f;
ll eu(ll n)
{
ll ans=n;
for(ll i=2;i*i<=n;i++)
{
if(n%i==0)
{
ans=ans/i*(i-1);
while(n%i==0)n/=i;
}
}
if(n!=1)ans=ans/n*(n-1);
return ans;
}
int main()
{
ll n;scanf("%lld",&n);
ll ans=0;
for(int i=1;i*i<=n;i++)
{
if(n%i==0)
{
ans+=i*eu(n/i);
if(i*i!=n)ans+=n/i*eu(i);
}
}
printf("%lld\n",ans);
return 0;
}
/***********************
***********************/
bzoj2705: [SDOI2012]Longge的问题 欧拉定理的更多相关文章
- BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】
BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...
- BZOJ2705: [SDOI2012]Longge的问题
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...
- 【欧拉函数】BZOJ2705: [SDOI2012]Longge的问题
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Solut ...
- bzoj 2705: [SDOI2012]Longge的问题——欧拉定理
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...
- BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)
题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...
- 【数论】【枚举约数】【欧拉函数】bzoj2705 [SDOI2012]Longge的问题
∵∑gcd(i, N)(1<=i <=N) =k1*s(f1)+k2*s(k2)+...+km*s(km) {ki是N的约数,s(ki)是满足gcd(x,N)=ki(1<=x< ...
- [BZOJ2705][SDOI2012]Longge的问题 数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 首先分析得题目所求$gcd(i,N)$的取值只可能是$N$的因子,则有$$Ans=\ ...
- bzoj2705 [SDOI2012]Longge的问题——因数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 一开始自己想了半天... 有了点思路:遍历 n 的因数 k,每个因数要预处理出 gcd ...
- 【bzoj2705】[SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2507 Solved: 1531[Submit][ ...
随机推荐
- Hibernate的状态,缓存和映射
Hibernate的状态,缓存和映射 1.对象的状态 1.1.对象状态的概念和分类 在使用Hibernate操作数据库的时候,我们先创建了JavaBean对象,然后使用session来保存或者更新到数 ...
- ArcGIS API for JavaScript开发笔记(一)——ArcGIS for Javascript API 3.14本地部署
堪称史上最详细的< ArcGIS forJavascript API 3.14本地部署>文档,有图有真相~~~ ---------环境:Windows server 2012R2,IIS ...
- 去掉chrome、safari input或textarea在得到焦点时出现黄色边框的方法
1.去掉chrome.safari input或textarea在得到焦点时出现黄色边框的方法 input{ outline:0;} 2.去掉chrome.safari textarea右下角可拖动鼠 ...
- Puppet学习:Augeas的怪问题
今天测试部署Zabbix,本来以前是正常的,今天莫名其妙报错.测试后发现是Augeas出现问题,无论如何都不执行.于是采用调试模式: puppet agent --test --verbose --d ...
- C#基础整理(二)
1.变量类型int.double.string.char.bool.decimal变量使用规则:先声明,再赋值,最后使用 2.命名规范:Camel:第一个单词首字母小写,其他单词首字母大写,其余字母小 ...
- python之threading.local
简述: threading.local是全局变量但是它的值却在当前调用它的线程当中 作用: 在threading module中,有一个非常特别的类local.一旦在主线程实例化了一个local,它会 ...
- 模块讲解----反射 (基于web路由的反射)
一.反射的实际案例: def main(): menu = ''' 1.账户信息 2.还款 3.取款 4.转账 5.账单 ''' menu_dic = { ':account_info, ':repa ...
- 在jQuery中解决事件冒泡问题
<pre name="code" class="html">事件会按照DOM层次结构像水泡一样不断向上直至顶端 解决方法:在事件处理函数中返回fal ...
- grub的安装与配置-------引导redhat grub
1.安装 有两种方法: a.在联网的情况下,用新立德安装: apt-get install grub b.在没网的时候,特别是linux网卡驱动没有安装: 自己从http://packages.ubu ...
- C#之父
来自为知笔记(Wiz)