题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705

一开始自己想了半天...

有了点思路:遍历 n 的因数 k,每个因数要预处理出 gcd 等于这个因数的数的个数 s[k];

预处理过程中还要去重:s[k] = (n-1) / k , s[k] -= s[2*k] + s[3*k] +......,&(*%$^&...

正要勇猛去写的时候还是点开了TJ,然后被自己的愚蠢暴击...

考虑 gcd ( n , m ) = k 的 m 的个数,发现 gcd ( n/k , m/k ) = 1,也就是 phi ( n/k )!!!

所以遍历因数,求它们的欧拉函数;

但范围太大了不能预处理,所以暴力每次求;

然而发现自己暴力也不会了,想了许多纯纯的暴力...

还是要用公式的啊... phi (x) = x * ∏ ( 1 - 1 / p[i] );

总之,就是一道关于欧拉函数的水题...

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
ll n,ans;
ll phi(ll x)
{
ll ret=x;
for(int i=;i*i<=x;i++)
if(x%i==)
{
ret=ret/i*(i-);//防止溢出
while(x%i==)x/=i;
}
if(x>) ret=ret/x*(x-);
return ret;
}
int main()
{
scanf("%lld",&n);
for(int i=;i*i<=n;i++)
if(n%i==)
{
ans+=i*phi(n/i);
if(i*i<n) ans+=n/i*phi(i);//别算2遍 sqrt(n)
}
printf("%lld",ans);
return ;
}

bzoj2705 [SDOI2012]Longge的问题——因数的更多相关文章

  1. BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】

    BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...

  2. BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  3. 【欧拉函数】BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N).   Solut ...

  4. BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

    题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...

  5. bzoj2705: [SDOI2012]Longge的问题 欧拉定理

    题意:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 题解:考虑n的所有因子,假设有因子k,那么对答案的贡献gcd(i,n)==k的个数即gcd(i/k,n/k)== ...

  6. 【数论】【枚举约数】【欧拉函数】bzoj2705 [SDOI2012]Longge的问题

    ∵∑gcd(i, N)(1<=i <=N) =k1*s(f1)+k2*s(k2)+...+km*s(km) {ki是N的约数,s(ki)是满足gcd(x,N)=ki(1<=x< ...

  7. [BZOJ2705][SDOI2012]Longge的问题 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 首先分析得题目所求$gcd(i,N)$的取值只可能是$N$的因子,则有$$Ans=\ ...

  8. 【bzoj2705】[SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2507  Solved: 1531[Submit][ ...

  9. BZOJ 2705: [SDOI2012]Longge的问题( 数论 )

    T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...

随机推荐

  1. Django 模版语法 二

    变量的过滤器(filter)的使用 过滤器:upper, lower, first, capfirst 在 views.py 中修改 from django.shortcuts import rend ...

  2. Python之目录结构

    Python之目录结构 项目名project_name project_name -|--bin (可执行文件) --|--start.py import os,sys #设置环境变量 BASE_DI ...

  3. 判断List集合为空

    package org.springframework.util; CollectionUtils.isEmpty(list)

  4. jquery如何通过ajax请求获取后台数据显示在表格上

    1.引入bootstrap和jquery的cdn <link rel="stylesheet" type="text/css" href="ht ...

  5. 【SGU194&ZOJ2314】Reactor Cooling(有上下界的网络流)

    题意: 给n个点,及m根pipe,每根pipe用来流躺液体的,单向的,每时每刻每根pipe流进来的物质要等于流出去的物质,要使得m条pipe组成一个循环体,里面流躺物质. 并且满足每根pipe一定的流 ...

  6. 安装最新版本的zabbix

    1. 先安装php5.4 最新版本: yum安装php5.4或5.5 https://blog.csdn.net/MarkBoo/article/details/49424183 2. 然后参照官网或 ...

  7. java核心技术卷一

    java核心技术卷一 java基础类型 整型 数据类型 字节数 取值范围 int 4 +_2^4*8-1 short 2 +_2^2*8-1 long 8 +_2^8*8-1 byte 1 -128- ...

  8. eclipse添加高版本tomcat问题

    eclipse添加高版本tomcat会报错,提示无法匹配高版本的容器installation is expected 解决方法: 1.找到tomcat的lib目录下的catalina.jar包,用压缩 ...

  9. Ubuntu 16.04安装录屏软件SimpleScreenRecorder

    安装: sudo add-apt-repository ppa:maarten-baert/simplescreenrecorder sudo apt-get update sudo apt-get ...

  10. Hibernate自定义简单主键生成

    Hibernate自定义主键生成 当使用Hibernate定义pojo的时候,有时候需要生成一定规则的数据表主键,这时候我们可以采用自定义主键生成方式去生成主键. 例如: 1.在pojo属性中定义数据 ...