bzoj2705 [SDOI2012]Longge的问题——因数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705
一开始自己想了半天...
有了点思路:遍历 n 的因数 k,每个因数要预处理出 gcd 等于这个因数的数的个数 s[k];
预处理过程中还要去重:s[k] = (n-1) / k , s[k] -= s[2*k] + s[3*k] +......,&(*%$^&...
正要勇猛去写的时候还是点开了TJ,然后被自己的愚蠢暴击...
考虑 gcd ( n , m ) = k 的 m 的个数,发现 gcd ( n/k , m/k ) = 1,也就是 phi ( n/k )!!!
所以遍历因数,求它们的欧拉函数;
但范围太大了不能预处理,所以暴力每次求;
然而发现自己暴力也不会了,想了许多纯纯的暴力...
还是要用公式的啊... phi (x) = x * ∏ ( 1 - 1 / p[i] );
总之,就是一道关于欧拉函数的水题...
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
ll n,ans;
ll phi(ll x)
{
ll ret=x;
for(int i=;i*i<=x;i++)
if(x%i==)
{
ret=ret/i*(i-);//防止溢出
while(x%i==)x/=i;
}
if(x>) ret=ret/x*(x-);
return ret;
}
int main()
{
scanf("%lld",&n);
for(int i=;i*i<=n;i++)
if(n%i==)
{
ans+=i*phi(n/i);
if(i*i<n) ans+=n/i*phi(i);//别算2遍 sqrt(n)
}
printf("%lld",ans);
return ;
}
bzoj2705 [SDOI2012]Longge的问题——因数的更多相关文章
- BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】
BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...
- BZOJ2705: [SDOI2012]Longge的问题
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...
- 【欧拉函数】BZOJ2705: [SDOI2012]Longge的问题
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Solut ...
- BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)
题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...
- bzoj2705: [SDOI2012]Longge的问题 欧拉定理
题意:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 题解:考虑n的所有因子,假设有因子k,那么对答案的贡献gcd(i,n)==k的个数即gcd(i/k,n/k)== ...
- 【数论】【枚举约数】【欧拉函数】bzoj2705 [SDOI2012]Longge的问题
∵∑gcd(i, N)(1<=i <=N) =k1*s(f1)+k2*s(k2)+...+km*s(km) {ki是N的约数,s(ki)是满足gcd(x,N)=ki(1<=x< ...
- [BZOJ2705][SDOI2012]Longge的问题 数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 首先分析得题目所求$gcd(i,N)$的取值只可能是$N$的因子,则有$$Ans=\ ...
- 【bzoj2705】[SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2507 Solved: 1531[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题( 数论 )
T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...
随机推荐
- TensorFlow2-维度变换
目录 TensorFlow2-维度变换 Outline(大纲) 图片视图 First Reshape(重塑视图) Second Reshape(恢复视图) Transpose(转置) Expand_d ...
- C语言学习8
计算某日是该年的第几天 编写一个计算天数的程序,用户从键盘输入年.月.日,在屏幕中输出此日期是该年的第几天. /******************************************** ...
- FreeRTOS--疑难杂症
花了3个晚上,把这个章节看完,受益匪浅. 最有用的应该是与中断相关的错误,优先排查中断优先级设置. 堆栈溢出检查,可能用到,一般先把堆栈设置的足够大,只要没有溢出就是好事,溢出了,掌握了栈溢出钩子函数 ...
- 牛客网补题 New Game!(原Wannafly summer camp day2原题)
思路:这个题在秦皇岛的时候好像没有写出来,反正我是没有写出来,题解是听懂了:把直线和圆都看做一个结点,圆和直线用点到直线的距离与半径差求出来,圆和圆之间用点和点之间的距离和半径差表示,最后最短路跑一遍 ...
- Java中static、final、static final的区别
final: final可以修饰:属性,方法,类,局部变量(方法中的变量) final修饰的属性的初始化可以在编译期,也可以在运行期,初始化后不能被改变. final修饰的属性跟具体对象有关,在运行期 ...
- 如何抓取崩溃的log日志
4.手机录屏工具的推荐 Andriod:录屏大师,易录屏等等. iOS:AirPlayer,iTools. 5.如何抓取崩溃的log日志? android闪退获取日志方法: 1.下载adb工具包 2. ...
- hdu3440 House Man 【差分约束系统】
House Man Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- php框架之自动加载与统一入口
现在PHP有很多的框架,基本都是以MVC为基础进行设计的.其实很多框架(像thinkphp,zf,symfont等)都有两个特性,自动加载类文件和统一入口.这里就简单实现以上两个特性. 假设PHP使用 ...
- 3D模型
题目描述 一座城市建立在规则的n×m网格上,并且网格均由1×1正方形构成.在每个网格上都可以有一个建筑,建筑由若干个1×1×1的立方体搭建而成(也就是所有建筑的底部都在同一平面上的).几个典型的城市模 ...
- python之模块随笔记-os
操作系统模块:import os os.remove() 删除文件 os.unlink() 删除链接文件 os.rename() 重命名文件 os.listdir() 列出指定目录下所有文件 os.c ...