Codeforces1101G (Zero XOR Subset)-less 【线性基】【贪心】
题目分析:
考虑到这是一个区间的异或问题,不妨求出前缀和,令$sum[i] = Xor_{j=1}^{i}a[j]$。
对于区间$[l,r]$的异或结果,等于$sum[r] \oplus sum[l-1]$。那么原问题等价于选尽量多的点$p_x$,使得这些点构成的$sum[p_x] \oplus sum[p_{x-1}]$的子集的异或非$0$。我们不断往前异或,可以把问题转化为选尽量多的$p_x$,使得$sum[p_x]$的子集的异或非$0$。这是因为这两者的线性基等价。
这样子这题就变成BZOJ2460的弱化版了。关于BZOJ2460的证明,我还没想到。但是这道题是它的弱化版,也就是$magic=1$的情况,我可以试着给出一个证明。
使用反证法,假设以不同的顺序插入线性基得到的答案是不同的,那么存在一种插入方式使得答案线性基为${a_i}$,另一种插入方式线性基为${b_i}$,$|{a_i}| > |{b_i}|$。现在只需说明$|{a_i}| = |{b_i}|$即可。
实际上这里有一个想法,就是任意一种插入方式构成的线性基能表示出的数是相同的,就能说明$|{a_i}| = |{b_i}|$。为什么?
想象一个二维空间和一个三维空间,坐标$(1,2,3)$不能在一个二维空间被表示不是吗?同理两个表示域相同的线性基的维度肯定相同,否则其中维度多的那个线性基的某一维肯定可以被其它维表示,这不符合线性基的定义。
假设现在存在一个数$x$,$a$线性基可以表示,$b$线性基表示不了。如果这个数属于原序列,那么它一定早就被插入了$b$线性基中,而不会被忽视。否则它一定能被原序列中的几个数所表示出来。但我们又发现$b$线性基可以表示出原序列中的任何数,那么利用这些表示方法同样可以表示出$x$,所以这样的数不存在。所以$|{a_i}| = |{b_i}|$。
代码:
#include<bits/stdc++.h>
using namespace std; const int maxn = ; int n,a[maxn]; int p[]; void read(){
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]),a[i] ^= a[i-];
} void work(){
if(a[n] == ){puts("-1");return;}
for(int i=;i>=;i--)if(a[n] & (<<i)) {p[i] = a[n];break;}
int ans = ;
for(int i=;i<n;i++){
for(int j=;j>=;j--){
if(a[i] & (<<j)){
if(p[j]) a[i] ^= p[j];
else{p[j] = a[i];ans++;break;}
}
}
}
printf("%d\n",ans);
} int main(){
read();
work();
return ;
}
Codeforces1101G (Zero XOR Subset)-less 【线性基】【贪心】的更多相关文章
- CodeForces - 1101G :(Zero XOR Subset)-less(线性基)
You are given an array a1,a2,…,an of integer numbers. Your task is to divide the array into the maxi ...
- CF1101G (Zero XOR Subset)-less 线性基
传送门 既然每一次选择出来的都是一个子段,不难想到前缀和计算(然而我没有想到--) 设异或前缀和为\(x_i\),假设我们选出来的子段为\([1,i_1],(i_1,i_2],...,(i_{k-1} ...
- BZOJ 2460 & 洛谷 P4570 [BJWC2011]元素 (线性基 贪心)
题目链接: 洛谷 BZOJ 题意 给定 \(n\) 个矿石,每个矿石有编号和魔力值两种属性,选择一些矿石,使得魔力值最大且编号的异或和不为 0. 思路 线性基 贪心 根据矿石的魔力值从大到小排序. 线 ...
- bzoj 2115 Xor - 线性基 - 贪心
题目传送门 这是个通往vjudge的虫洞 这是个通往bzoj的虫洞 题目大意 问点$1$到点$n$的最大异或路径. 因为重复走一条边后,它的贡献会被消去.所以这条路径中有贡献的边可以看成是一条$1$到 ...
- BZOJ 4269: 再见Xor 线性基+贪心
Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. Input 第一行一个正整数N. 接下来一行N个非负整数. ...
- 【BZOJ-2460&3105】元素&新Nim游戏 动态维护线性基 + 贪心
3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 839 Solved: 490[Submit][Stat ...
- (Zero XOR Subset)-less-线性基
(Zero XOR Subset)-less 题意 :把n个数分成多个集合,要求 不能有集合为空,最终不能有非空子集合异或值为0,尽可能划分的多一些. 思路 :非法情况就只有 n个数异或 为0,其他的 ...
- BZOJ.2460.[BeiJing2011]元素(线性基 贪心)
题目链接 线性基:https://blog.csdn.net/qq_36056315/article/details/79819714. \(Description\) 求一组矿石,满足其下标异或和不 ...
- Codeforces 1100F(线性基+贪心)
题目链接 题意 给定序列,$q(1\leq q \leq 100000) $次询问,每次查询给定区间内的最大异或子集. 思路 涉及到最大异或子集肯定从线性基角度入手.将询问按右端点排序后离线处理询问, ...
随机推荐
- java 一次CPU占用过高问题的排查及解决
最近一段时间 某台服务器上的一个应用总是隔一段时间就自己挂掉 用top看了看 从重新部署应用开始没有多长时间CPU占用上升得很快 排查步骤 1.使用top 定位到占用CPU高的进程PID ...
- C#.NET 大型通用信息化系统集成快速开发平台 4.0 版本 - 客户常用问题回答
A.系统有两个添加用户 一个是申请用户.一个是添加用户.这两个分别在什么情况下使用? 回答 1:不是所有的用户都是管理员添加的,特别是分公司多,部门多时,都由管理员添加,效率低,而且很容易输入不精确的 ...
- C++ string中的find()函数
1.string中find()返回值是字母在母串中的位置(下标记录),如果没有找到,那么会返回一个特别的标记npos.(返回值可以看成是一个int型的数) #include<cstring> ...
- 提取PPT文件中的Vba ProjectStg Compressed Atom。Extract PPT VBA Compress Stream
http://msdn.microsoft.com/en-us/library/cc313106(v=office.12).aspx 微软文档 PartI ********************* ...
- Java向下转型的意义
一开始学习 Java 时不重视向下转型.一直搞不清楚向下转型的意义和用途,不清楚其实就是不会,那开发的过程肯定也想不到用向下转型. 其实向上转型和向下转型都是很重要的,可能我们平时见向上转型多一点,向 ...
- 关于 pip安装的可能错误的排除
今天安装selenium总是报错(下为错误信息) C:\Python27\Scripts>pip install seleniumCollecting seleniumC:\Python27\l ...
- MySQL 高可用性—keepalived+mysql双主
MySQL 高可用性—keepalived+mysql双主(有详细步骤和全部配置项解释) - 我的博客 - CSDN博客https://blog.csdn.net/qq_36276335/articl ...
- 把composer的源切换为 国际的源
把composer的源切换为 国际的源:composer config -g repo.packagist composer https://packagist.org
- CMake--模块的使用和自定义模块
1.链接外部库 如果程序中使用了外部库,事先并不知道它的头文件和链接库的位置,就要给出头文件和链接库的查找方法,并将他们链接到程序中. FIND_PACKAGE(<name> [major ...
- 老男孩python学习自修第十六天【常用模块之sys和os】
例子: sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit(0) sys.version 获取Python解释程序的版本信息 sys. ...