【BZOJ1188】分裂游戏(博弈论)
【BZOJ1188】分裂游戏(博弈论)
题面
题解
这道题目比较神仙。
首先观察结束状态,即\(P\)状态,此时必定是所有的豆子都在最后一个瓶子中。
发现每次的转移一定是拿出一棵豆子,放两颗豆子,所以一个瓶子中无论豆子数量是多少,我们都可以把所有的豆子拆开看成单个的\(Nim\)游戏(因为迟早都要全部进入到\(n\)号瓶子的)
发现如果有两个在同位置的豆子,胜负结果是不会改变的,因为后手可以一直模仿先手的动作进行单个游戏。因此所有位置的豆子等价于这个位置的豆子总数对于\(2\)的余数。
那么,现在问题变成了,给你一棵豆子,他在\(i\)位置,回答胜负情况。
那么预处理\(SG\)函数即可。这个\(SG\)函数从后往前求。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 50
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,a[MAX],SG[MAX];
bool vis[MAX];
int main()
{
int T=read();
while(T--)
{
n=read();memset(SG,0,sizeof(SG));
for(int i=1;i<=n;++i)a[i]=read();
for(int i=n-1;i;--i)
{
memset(vis,0,sizeof(vis));
for(int j=i+1;j<=n;++j)
for(int k=j;k<=n;++k)
vis[SG[j]^SG[k]]=true;
for(int j=0;;++j)if(!vis[j]){SG[i]=j;break;}
}
int cnt=0,A=0,B=0,C=0,sg=0;
for(int i=1;i<=n;++i)if(a[i]&1)sg^=SG[i];
for(int i=1;i<=n;++i)
if(a[i])
for(int j=i+1;j<=n;++j)
for(int k=j;k<=n;++k)
if(!(sg^SG[i]^SG[j]^SG[k]))
{
if(!cnt)A=i,B=j,C=k;
++cnt;
}
printf("%d %d %d\n%d\n",A-1,B-1,C-1,cnt);
}
return 0;
}
【BZOJ1188】分裂游戏(博弈论)的更多相关文章
- bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 973 Solved: 599[Submit][Status ...
- BZOJ1188:[HNOI2007]分裂游戏(博弈论)
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏.该游戏的规则试:共有n个瓶子,标号为0,1,2.....n-1,第i个瓶子中装有p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择3个 ...
- [HNOI2007]分裂游戏 博弈论
题面 题面 题解 这题的思路比较特别,观察到我们的每次操作实质上是对于一颗豆子的操作,而不是对一瓶豆子的操作,因此我们要把每颗豆子当做一个独立的游戏,而它所在的瓶子代表了它的SG值. 瓶子数量很少,因 ...
- [bzoj1188]分裂游戏
容易发现所有豆子相互独立,只需要考虑每一个豆子的sg函数并异或起来即可,sg函数从后往前暴力即可 1 #include<bits/stdc++.h> 2 using namespace s ...
- [bzoj1188][HNOI2007]分裂游戏_博弈论
分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...
- 【BZOJ 1188】 [HNOI2007]分裂游戏
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子 ...
- bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 733 Solved: 451[Submit][Status ...
- bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理
[HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1394 Solved: 847[Submit][Status][Dis ...
- POJ.1067 取石子游戏 (博弈论 威佐夫博弈)
POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...
随机推荐
- 快速为git添加一个用户
环境:用gitosis-admin管理git的权限. 前期git环境的搭建略去,主要给出快速添加一个用户的步骤: 在git bash中用“ssh-keygen -t rsa”生成公钥私钥,默认放到 “ ...
- React不同版本之间需要注意的地方
React Fiber react fiber指的是react16.0机器之后的版本,相对于之前的版本来说,这一个版本的更新做了很多的优化,所以和之前的版本中的用法可能会发生不同,所以,平常开发中,主 ...
- Redis教程(Linux)
这里汇总了从简单的安装到较为复杂的配置,由浅入深的学习redis... 一 , 安装 1) redis扩展安装 从官网上下载扩展压缩包 wget http://pecl.php.net/get/red ...
- JS—ajax及async和defer的区别
###1.ajax “Asynchronous Javascript And XML”(异步 JavaScript 和 XML) 使用: 如不考虑旧版本浏览器兼容性, // 第一步创建xhr对象 v ...
- node错误中间件处理 express类 带有路由操作
let express = require('express'); let app = new express(); let bodyParser = require('body-parser'); ...
- java随笔4 java中接参整形转字符串
通过+‘’来实现
- 虚拟机安装CentOS7之后没有ip的问题
CentOS 7 默认是不启动网卡的(ONBOOT=no),主要是修改一下网上配置,然后重起便可,看这篇博客操作: https://blog.csdn.net/dancheren/article/de ...
- windows环境下protobuf的java操作{编译,序列化,反序列化}
google protocol buffer的使用和原理 概况: Protocol Buffers(也就是protobuf)是谷歌的语言中立的.平台中立的.可扩展的用于序列化结构化的数据: windo ...
- python学习笔记(10)--组合数据类型(集合类型)
集合类型 集合是多个元素的无序组合,每个元素唯一,不存在相同类型,每个元素是不可变类型.用{}表示,元素间用逗号分隔.建立结合类型用{},或set函数,如果是空集合必须用set. >>&g ...
- git ignore 忽略 idea文件
下载了项目组的代码之后发现,一个问题,一编译就生成了很多的 .idea文件夹 还有 target文件夹,这些是不需要提交到git上的, 需要提交的时候屏蔽一下,所以需要建立一个ignore文件列表把他 ...