Description

给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点。每个点有一个权值v_i。
你需要将这棵树转化成一个大根堆。确切地说,你需要选择尽可能多的节点,满足大根堆的性质:对于任意两个点i,j,如果i在树上是j的祖先,那么v_i>v_j。
请计算可选的最多的点数,注意这些点不必形成这棵树的一个连通子树。

Input

第一行包含一个正整数n(1<=n<=200000),表示节点的个数。
接下来n行,每行两个整数v_i,p_i(0<=v_i<=10^9,1<=p_i<i,p_1=0),表示每个节点的权值与父亲。

Output

输出一行一个正整数,即最多的点数。

Sample Input

6
3 0
1 1
2 1
3 1
4 1
5 1

Sample Output

5

Solution

挺巧妙的……

考虑如果只是在序列上做的话,其实这个就是个$LIS$。

现在把他搬到树上其实也差不多,可以每个点开个$multiset$,也就是$nlogn$的$LIS$中的那个单调栈。

每个节点把儿子启发式合并,然后像序列$LIS$一样找到第一个大于等于它的这个数删掉并把它加入。

答案就是根节点$multiset$的$size$

Code

 #include<iostream>
#include<cstdio>
#include<set>
#define N (200009)
using namespace std; struct Edge{int to,next;}edge[N];
int n,x,v[N];
int head[N],num_edge;
multiset<int>S[N];
multiset<int>::iterator it; void add(int u,int v)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
head[u]=num_edge;
} void DFS(int x)
{
for (int i=head[x]; i; i=edge[i].next)
{
int y=edge[i].to; DFS(y);
if (S[x].size()<S[y].size()) swap(S[x],S[y]);
for (it=S[y].begin(); it!=S[y].end(); ++it) S[x].insert(*it);
S[y].clear();
}
it=S[x].lower_bound(v[x]);
if (it!=S[x].end()) S[x].erase(it);
S[x].insert(v[x]);
} int main()
{
scanf("%d",&n);
for (int i=; i<=n; ++i)
{
scanf("%d%d",&v[i],&x);
if (x) add(x,i);
}
DFS();
printf("%d\n",S[].size());
}

BZOJ4919:[Lydsy1706月赛]大根堆(set启发式合并)的更多相关文章

  1. bzoj 4919 [Lydsy1706月赛]大根堆 set启发式合并+LIS

    4919: [Lydsy1706月赛]大根堆 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 599  Solved: 260[Submit][Stat ...

  2. BZOJ 4919: [Lydsy1706月赛]大根堆 set启发式合并

    这个和 bzoj 5469 几乎是同一道题,但是这里给出另一种做法. 你发现你要求的是一个树上 LIS,而序列上的 LIS 有一个特别神奇的 $O(n\log n) $ 做法. 就是维护一个单调递增的 ...

  3. BZOJ4919 [Lydsy1706月赛]大根堆 【dp + 启发式合并】

    题目链接 BZOJ4919 题解 链上的\(LIS\)维护一个数组\(f[i]\)表示长度为\(i\)的\(LIS\)最小的结尾大小 我们可以用\(multiset\)来维护这个数组,子树互不影响,启 ...

  4. BZOJ.4919.[Lydsy1706月赛]大根堆(线段树合并/启发式合并)

    题目链接 考虑树退化为链的情况,就是求一个最长(严格)上升子序列. 对于树,不同子树间是互不影响的.仿照序列上的LIS,对每个点x维护一个状态集合,即合并其子节点后的集合,然后用val[x]替换掉第一 ...

  5. bzoj4919 [Lydsy1706月赛]大根堆

    Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...

  6. BZOJ4919[Lydsy1706月赛]大根堆-------------线段树进阶

    是不是每做道线段树进阶都要写个题解..根本不会写 Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切 ...

  7. [Lydsy1706月赛]大根堆

    4919: [Lydsy1706月赛]大根堆 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 358  Solved: 150[Submit][Stat ...

  8. 【BZOJ4919】[Lydsy六月月赛]大根堆 线段树合并

    [BZOJ4919][Lydsy六月月赛]大根堆 Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切 ...

  9. BZOJ 4919: [Lydsy1706月赛]大根堆 启发式合并

    我不会告诉你这是线段树合并的好题的... 好吧我们可以搞一个multiset在dfs时求出LIS(自带二分+排序)进行启发式合并,轻松加愉悦... #include<cstdio> #in ...

随机推荐

  1. Visual Studio 监视与快速监视即时窗口没有智能提示

    工具->选项->文本编辑器->C# 将 自动列出成员 参数信息 都勾选上

  2. Jquery操作属性

    1.attr(name,value):修改单个属性! name :属性名称 value:属性的值 <script> $(function(){ //给div添加一个alt=hello的属性 ...

  3. Java基础——iO(二)

    接着上一篇,继续做学习笔记.学IO这块,突然找到一点好处,好像以后操作电脑,尤其是电脑里的文件啥的,可以很少的用鼠标了.添加.修改.删除啥的,几行代码就可以搞定了.这只是我一个初学者的一点小心思,IO ...

  4. mysql匿名登录 导致创建不了数据库

    常见问题 Access denied for user ''@'localhost' to database 'web02' //web02是我自己创建的数据库 原因分析:mysql数据库的user表 ...

  5. 撩课-Web大前端每天5道面试题-Day36

    1.介绍一下你对浏览器内核的理解? 主要分成两部分:渲染引擎(layout engineer或Rendering Engine)和JS引擎. 渲染引擎:负责取得网页的内容(HTML.XML.图像等等) ...

  6. java 实现多重继承

    java提高篇(九)-----实现多重继承 接口 多重继承指的是一个类可以同时从多于一个的父类那里继承行为和特征,然而我们知道Java为了保证数据安全,它只允许单继承.有些时候我们会认为如果系统中需要 ...

  7. POJ3090(SummerTrainingDay04-M 欧拉函数)

    Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7450   Accepted: ...

  8. layui实现复选框全选,反选

    html <div class="layui-input-inline"> <input type="checkbox" class=&quo ...

  9. iTerm通过堡垒机自动登录服务器

    为了保障网络和数据安全,越来越多公司使用堡垒机.iTerm作为一个好用的终端利器,要实现自动通过堡垒机登录服务器的方式有多种.下面我就来介绍一种通过expect脚本的方式完成配置. 第一步,进入/us ...

  10. hihocoder [Offer收割]编程练习赛12 [1495] ---- 矩形分割

    原题链接 矩形分割 算法分析: 解决该题要用到"并查集"的思想. 这里有一篇不错的博客介绍并查集: 并查集(Union-Find)算法介绍 记 int total=N*M,这里会有 ...