BZOJ 1076 [SCOI2008]奖励关

Description

  你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有$n$种,系统每次抛出这$n$种宝物的概率都相同且相互独立。也就是说,即使前$k-1$次系统都抛出宝物$1$(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为$\frac 1 n$。 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合$S_i$。只有当$S_i$中所有宝物都至少吃过一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

Input

  第一行为两个正整数$k$和$n$,即宝物的数量和种类。以下$n$行分别描述一种宝物,其中第一个整数代表分值,随后的整数依次代表该宝物的各个前提宝物(各宝物编号为$1到$n$),以$0$结尾。

Output

  输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

Sample Input

1 2
1 0
2 0

Sample Output

1.500000

HINT

【数据规模】

$1<=k<=100$,$1<=n<=15$,分值为$[-10^6,10^6]$内的整数。


注意到n的值很小,考虑概率DP配合状态压缩储存状态。

设$f[i][j]$为从第$i$次开始接宝物,并且当前状态为$j$的期望值。

若当前宝物可以被接住,则$f[i][j]=f[i][j]+max(f[i+1][j],f[i+1][j|p[k]]+v[k])$

否则,$f[i][j]+=f[i+1][j]$

实现不难,上代码:

 #include<iostream>
#include<cstdio>
#define foru(i,x,y) for(int i=x;i<=y;i++)
using namespace std;
double f[][];
int n,k,t,v[],d[],p[];
int main(){
scanf("%d%d",&n,&k);
foru(i,,)p[i]=<<(i-);
foru(i,,k){
scanf("%d",&v[i]);
while(scanf("%d",&t),t)
d[i]+=p[t];
}
for(int i=n;i;i--)
foru(j,,p[k+]-){
foru(l,,k)
((d[l]&j)==d[l])?f[i][j]+=max(f[i+][j],f[i+][j|p[l]]+v[l]):f[i][j]+=f[i+][j];
f[i][j]/=k;
}
printf("%.6lf\n",f[][]);
}

bzoj1076 奖励关(概率dp)(状态压缩)的更多相关文章

  1. 【bzoj1076】[SCOI2008]奖励关 期望dp+状态压缩dp

    题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再 ...

  2. hdu4336 Card Collector(概率DP,状态压缩)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  3. bzoj1076 奖励关 期望dp

    题目传送门 题目大意:总共有k次弹出宝物的机会,宝物共有n种,弹出不同的宝物的概率相同的,是每个宝物都有价值,和选择这个宝物的限制(必须具有特定的宝物),问最后的最优期望是多少. 思路:“正向推概率, ...

  4. [BZOJ1076][SCOI2008]奖励关(概率DP)

    Code #include <cstdio> #include <algorithm> #include <cstring> #define N 110 #defi ...

  5. BZOJ.1076.[SCOI2008]奖励关(概率DP 倒推)

    题目链接 BZOJ 洛谷 真的题意不明啊.. \(Description\) 你有k次选择的机会,每次将从n种物品中随机一件给你,你可以选择选或不选.选择它会获得这种物品的价值:选择一件物品前需要先选 ...

  6. hdu4336Card Collector 概率dp+状态压缩

    //给n个卡片每次出现的概率,求全部卡片都出现的须要抽的次数的期望 //dp[i]表示在状态的情况下到全部的卡片都出现的期望 //dp[i] = 1 + p1*dp[i] + ${p2[j]*dp[i ...

  7. BZOJ 1076: [SCOI2008]奖励关(概率+dp)

    首先嘛,看了这么久概率论真的不错啊。看到就知道怎么写(其实也挺容易的= =) 直接数位dp就行了 CODE: #include<cstdio> #include<cstring> ...

  8. 【BZOJ 3925】[Zjoi2015]地震后的幻想乡 期望概率dp+状态压缩+图论知识+组合数学

    神™题........ 这道题的提示......(用本苣蒻并不会的积分积出来的)并没有 没有什么卵用 ,所以你发现没有那个东西并不会 不影响你做题 ,然后你就可以推断出来你要求的是我们最晚挑到第几大的 ...

  9. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

随机推荐

  1. The full stack trace of the root cause is available in the Apache Tomcat/8.0.8 logs.

    这个问题是版本冲突的问题 1.调低jdk 版本,不能让jdk版本太高,至少不能比tomcat高,要不然就会有这个错误. 2.如果看过我这篇博客的人(https://www.cnblogs.com/CH ...

  2. 题解 P4317 【花神的数论题】

    题目 可能跟某位大佬有点类似,不过我的应该跑得比他快那么一点点......虽然应该没什么关系...... [分析] 假设一个对于一个数 \(N\) ,最高位为第 \(n\) 位 那么,显然有 \(2^ ...

  3. SQL基础教程(第2版)第5章 复杂查询:5-1 视图和表

    本章将以此前学过的SELECT语句,以及嵌套在SELECT语句中的视图和子查询等技术为中心进行学习.由于视图和子查询可以像表一样进行使用,因此如果能恰当地使用这些技术,就可以写出更加灵活的 SQL 了 ...

  4. mysql的常见面试问题

    1.如何登陆mysql数据库 MySQL -u username -p 2.如何开启/关闭mysql服务 service mysql start/stop 3.查看mysql的状态 service m ...

  5. 增删改查(简单版&连接数据库)

    这个博客也是补充之前的学习内容: 项目总述:这个增删改查我以,选课名称,选课教室,选课教师基本信息,作为主要的信息来源.主要对这些信息最基本的增删改查 详细的分析与说明: 1.首先在src文件里定义四 ...

  6. 使用idea出现的错误

    错误:打开maven项目时出现"程序包 com.sun.org.apache.xpath.internal 不可见 "的错误 这个问题出现的原因是: jdk版本的问题.可能是因为有 ...

  7. MySQL的InnoDB的幻读问题

    MySQL InnoDB事务的隔离级别有四级,默认是“可重复读”(REPEATABLE READ). 未提交读(READ UNCOMMITTED).另一个事务修改了数据,但尚未提交,而本事务中的SEL ...

  8. dp--背包--开心的金明

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今天 ...

  9. 京东云数据库RDS SQL Server高可用概述

    数据库的高可用是指在硬件.软件故障发生时,可以将业务从发生故障的数据库节点迁移至备用节点.本文主要讲述SQL Server高可用方案,以及京东云RDS数据库的高可用实现. 一.高可用解决方案总览 1. ...

  10. Popular generalized linear models|GLMM| Zero-truncated Models|Zero-Inflated Models|matched case–control studies|多重logistics回归|ordered logistics regression

    ============================================================== Popular generalized linear models 将不同 ...