scrapy-splash抓取动态数据例子一
目前,为了加速页面的加载速度,页面的很多部分都是用JS生成的,而对于用scrapy爬虫来说就是一个很大的问题,因为scrapy没有JS engine,所以爬取的都是静态页面,对于JS生成的动态页面都无法获得
解决方案:
1、利用第三方中间件来提供JS渲染服务: scrapy-splash 等。
2、利用webkit或者基于webkit库
Splash是一个Javascript渲染服务。它是一个实现了HTTP API的轻量级浏览器,Splash是用Python实现的,同时使用Twisted和QT。Twisted(QT)用来让服务具有异步处理能力,以发挥webkit的并发能力。
下面就来讲一下如何使用scrapy-splash:
1、利用pip安装scrapy-splash库:
2、pip install scrapy-splash
3、安装docker
scrapy-splash使用的是Splash HTTP API, 所以需要一个splash instance,一般采用docker运行splash,所以需要安装docker,具体参见:http://www.cnblogs.com/shaosks/p/6932319.html
4、启动docker
安装好后运行docker。docker成功安装后,有“Docker Quickstart Terminal”图标,双击他启动

5、拉取镜像(pull the image):
$ docker pull scrapinghub/splash

这样就正式启动了。
6、用docker运行scrapinghub/splash服务:
$ docker run -p 8050:8050 scrapinghub/splash
首次启动会比较慢,加载一些东西,多次启动会出现以下信息

这时要关闭当前窗口,然后在进程管理器里面关闭一些进程重新打开

重新打开Docker Quickstart Terminal,然后输入:docker run -p 8050:8050 scrapinghub/splash

7、配置splash服务(以下操作全部在settings.py):
1)添加splash服务器地址:

2)将splash middleware添加到DOWNLOADER_MIDDLEWARE中:

3)Enable SplashDeduplicateArgsMiddleware:

4)Set a custom DUPEFILTER_CLASS:

5)a custom cache storage backend:

8、正式抓取
该例子是抓取京东某个手机产品的详细信息,地址:https://item.jd.com/2600240.html
如下图:框住的信息是要榨取的内容

对应的html
1、京东价:

抓取代码:prices = site.xpath('//span[@class="p-price"]/span/text()')
2、促销

抓取代码:cxs = site.xpath('//div[@class="J-prom-phone-jjg"]/em/text()')
3、增值业务

抓取代码:value_addeds =site.xpath('//ul[@class="choose-support lh"]/li/a/span/text()')
4、重量

抓取代码:quality = site.xpath('//div[@id="summary-weight"]/div[2]/text()')
5、选择颜色

抓取代码:colors = site.xpath('//div[@id="choose-attr-1"]/div[2]/div/@title')
6、选择版本

抓取代码:versions = site.xpath('//div[@id="choose-attr-2"]/div[2]/div/@data-value')
7、购买方式

抓取代码:buy_style = site.xpath('//div[@id="choose-type"]/div[2]/div/a/text()')
8、套 装

抓取代码:suits = site.xpath('//div[@id="choose-suits"]/div[2]/div/a/text()')
9、增值保障

抓取代码:vaps = site.xpath('//div[@class="yb-item-cat"]/div[1]/span[1]/text()')
10、白条分期

抓取代码:stagings = site.xpath('//div[@class="baitiao-list J-baitiao-list"]/div[@class="item"]/a/strong/text()')
9、运行splash服务
在抓取之前首先要启动splash服务,命令:docker run -p 8050:8050 scrapinghub/splash,
点击“Docker Quickstart Terminal” 图标

10、运行scrapy crawl scrapy_splash

11、抓取数据


12、完整源代码
1、SplashSpider
# -*- coding: utf-8 -*-
import scrapy
from scrapy import Request
from scrapy.spiders import Spider
from scrapy_splash import SplashRequest
from scrapy_splash import SplashMiddleware
from scrapy.http import Request, HtmlResponse
from scrapy.selector import Selector
from scrapy_splash import SplashRequest
from splash_test.items import SplashTestItem
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
sys.stdout = open('output.txt', 'w') class SplashSpider(Spider):
name = 'scrapy_splash'
start_urls = [
'https://item.jd.com/2600240.html'
] # request需要封装成SplashRequest
def start_requests(self):
for url in self.start_urls:
yield SplashRequest(url
, self.parse
, args={'wait': '0.5'}
# ,endpoint='render.json'
) def parse(self, response): # 本文只抓取一个京东链接,此链接为京东商品页面,价格参数是ajax生成的。会把页面渲染后的html存在html.txt
# 如果想一直抓取可以使用CrawlSpider,或者把下面的注释去掉
site = Selector(response)
it_list = []
it = SplashTestItem()
#京东价
# prices = site.xpath('//span[@class="price J-p-2600240"]/text()')
# it['price']= prices[0].extract()
# print '京东价:'+ it['price']
prices = site.xpath('//span[@class="p-price"]/span/text()')
it['price'] = prices[0].extract()+ prices[1].extract()
print '京东价:' + it['price'] # 促 销
cxs = site.xpath('//div[@class="J-prom-phone-jjg"]/em/text()')
strcx = ''
for cx in cxs:
strcx += str(cx.extract())+' '
it['promotion'] = strcx
print '促销:%s '% strcx # 增值业务
value_addeds =site.xpath('//ul[@class="choose-support lh"]/li/a/span/text()')
strValueAdd =''
for va in value_addeds:
strValueAdd += str(va.extract())+' '
print '增值业务:%s ' % strValueAdd
it['value_add'] = strValueAdd # 重量
quality = site.xpath('//div[@id="summary-weight"]/div[2]/text()')
print '重量:%s ' % str(quality[0].extract())
it['quality']=quality[0].extract() #选择颜色
colors = site.xpath('//div[@id="choose-attr-1"]/div[2]/div/@title')
strcolor = ''
for color in colors:
strcolor += str(color.extract()) + ' '
print '选择颜色:%s ' % strcolor
it['color'] = strcolor # 选择版本
versions = site.xpath('//div[@id="choose-attr-2"]/div[2]/div/@data-value')
strversion = ''
for ver in versions:
strversion += str(ver.extract()) + ' '
print '选择版本:%s ' % strversion
it['version'] = strversion # 购买方式
buy_style = site.xpath('//div[@id="choose-type"]/div[2]/div/a/text()')
print '购买方式:%s ' % str(buy_style[0].extract())
it['buy_style'] = buy_style[0].extract() # 套装
suits = site.xpath('//div[@id="choose-suits"]/div[2]/div/a/text()')
strsuit = ''
for tz in suits:
strsuit += str(tz.extract()) + ' '
print '套装:%s ' % strsuit
it['suit'] = strsuit # 增值保障
vaps = site.xpath('//div[@class="yb-item-cat"]/div[1]/span[1]/text()')
strvaps = ''
for vap in vaps:
strvaps += str(vap.extract()) + ' '
print '增值保障:%s ' % strvaps
it['value_add_protection'] = strvaps # 白条分期
stagings = site.xpath('//div[@class="baitiao-list J-baitiao-list"]/div[@class="item"]/a/strong/text()')
strstaging = ''
for st in stagings:
ststr =str(st.extract())
strstaging += ststr.strip() + ' '
print '白天分期:%s ' % strstaging
it['staging'] = strstaging it_list.append(it)
return it_list
2、SplashTestItem
# -*- coding: utf-8 -*- # Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html import scrapy class SplashTestItem(scrapy.Item):
#单价
price = scrapy.Field()
# description = Field()
#促销
promotion = scrapy.Field()
#增值业务
value_add = scrapy.Field()
#重量
quality = scrapy.Field()
#选择颜色
color = scrapy.Field()
#选择版本
version = scrapy.Field()
#购买方式
buy_style=scrapy.Field()
#套装
suit =scrapy.Field()
#增值保障
value_add_protection = scrapy.Field()
#白天分期
staging = scrapy.Field()
# post_view_count = scrapy.Field()
# post_comment_count = scrapy.Field()
# url = scrapy.Field()
3、SplashTestPipeline
# -*- coding: utf-8 -*- # Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
import codecs
import json class SplashTestPipeline(object):
def __init__(self):
# self.file = open('data.json', 'wb')
self.file = codecs.open(
'spider.txt', 'w', encoding='utf-8')
# self.file = codecs.open(
# 'spider.json', 'w', encoding='utf-8') def process_item(self, item, spider):
line = json.dumps(dict(item), ensure_ascii=False) + "\n"
self.file.write(line)
return item def spider_closed(self, spider):
self.file.close()
4、settings.py
# -*- coding: utf-8 -*- # Scrapy settings for splash_test project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
# http://doc.scrapy.org/en/latest/topics/settings.html
# http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
# http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
ITEM_PIPELINES = {
'splash_test.pipelines.SplashTestPipeline':300
}
BOT_NAME = 'splash_test' SPIDER_MODULES = ['splash_test.spiders']
NEWSPIDER_MODULE = 'splash_test.spiders' SPLASH_URL = 'http://192.168.99.100:8050'
# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'splash_test (+http://www.yourdomain.com)' # Obey robots.txt rules
ROBOTSTXT_OBEY = True DOWNLOADER_MIDDLEWARES = {
'scrapy_splash.SplashCookiesMiddleware': 723,
'scrapy_splash.SplashMiddleware': 725,
'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware': 810,
}
SPIDER_MIDDLEWARES = {
'scrapy_splash.SplashDeduplicateArgsMiddleware': 100,
}
DUPEFILTER_CLASS = 'scrapy_splash.SplashAwareDupeFilter'
HTTPCACHE_STORAGE = 'scrapy_splash.SplashAwareFSCacheStorage'
# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default)
#COOKIES_ENABLED = False # Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False # Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
# 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
# 'Accept-Language': 'en',
#} # Enable or disable spider middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
# 'splash_test.middlewares.SplashTestSpiderMiddleware': 543,
#} # Enable or disable downloader middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
# 'splash_test.middlewares.MyCustomDownloaderMiddleware': 543,
#} # Enable or disable extensions
# See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
#EXTENSIONS = {
# 'scrapy.extensions.telnet.TelnetConsole': None,
#} # Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
#ITEM_PIPELINES = {
# 'splash_test.pipelines.SplashTestPipeline': 300,
#} # Enable and configure the AutoThrottle extension (disabled by default)
# See http://doc.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default)
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
scrapy-splash抓取动态数据例子一的更多相关文章
- scrapy-splash抓取动态数据例子八
一.介绍 本例子用scrapy-splash抓取界面网站给定关键字抓取咨询信息. 给定关键字:个性化:融合:电视 抓取信息内如下: 1.资讯标题 2.资讯链接 3.资讯时间 4.资讯来源 二.网站信息 ...
- scrapy-splash抓取动态数据例子七
一.介绍 本例子用scrapy-splash抓取36氪网站给定关键字抓取咨询信息. 给定关键字:个性化:融合:电视 抓取信息内如下: 1.资讯标题 2.资讯链接 3.资讯时间 4.资讯来源 二.网站信 ...
- scrapy-splash抓取动态数据例子六
一.介绍 本例子用scrapy-splash抓取中广互联网站给定关键字抓取咨询信息. 给定关键字:打通:融合:电视 抓取信息内如下: 1.资讯标题 2.资讯链接 3.资讯时间 4.资讯来源 二.网站信 ...
- scrapy-splash抓取动态数据例子五
一.介绍 本例子用scrapy-splash抓取智能电视网网站给定关键字抓取咨询信息. 给定关键字:打通:融合:电视 抓取信息内如下: 1.资讯标题 2.资讯链接 3.资讯时间 4.资讯来源 二.网站 ...
- scrapy-splash抓取动态数据例子四
一.介绍 本例子用scrapy-splash抓取微众圈网站给定关键字抓取咨询信息. 给定关键字:打通:融合:电视 抓取信息内如下: 1.资讯标题 2.资讯链接 3.资讯时间 4.资讯来源 二.网站信息 ...
- scrapy-splash抓取动态数据例子三
一.介绍 本例子用scrapy-splash抓取今日头条网站给定关键字抓取咨询信息. 给定关键字:打通:融合:电视 抓取信息内如下: 1.资讯标题 2.资讯链接 3.资讯时间 4.资讯来源 二.网站信 ...
- scrapy-splash抓取动态数据例子二
一.介绍 本例子用scrapy-splash抓取一点资讯网站给定关键字抓取咨询信息. 给定关键字:打通:融合:电视 抓取信息内如下: 1.资讯标题 2.资讯链接 3.资讯时间 4.资讯来源 二.网站信 ...
- scrapy-splash抓取动态数据例子十六
一.介绍 本例子用scrapy-splash爬取梅花网(http://www.meihua.info/a/list/today)的资讯信息,输入给定关键字抓取微信资讯信息. 给定关键字:数字:融合:电 ...
- scrapy-splash抓取动态数据例子十五
一.介绍 本例子用scrapy-splash爬取电视之家(http://www.tvhome.com/news/)网站的资讯信息,输入给定关键字抓取微信资讯信息. 给定关键字:数字:融合:电视 抓取信 ...
随机推荐
- BootStrap 实现导航栏nav透明,nav子元素文字不透明
在给nav 的属性赋值 opacity:0.0透明度时会导致nav内子元素会继承opacity属性.此时再对子元素赋值opacity:1.0 时会导致 子元素实际opacity值为0.0*1.0=0. ...
- Partial Views
@Html.Partial("MyPartial") @Html.Partial("MyStronglyTypedPartial", new [] {&qu ...
- 六十二 Web开发 使用模板
Web框架把我们从WSGI中拯救出来了.现在,我们只需要不断地编写函数,带上URL,就可以继续Web App的开发了. 但是,Web App不仅仅是处理逻辑,展示给用户的页面也非常重要.在函数中返回一 ...
- NoSQL 数据库应用
类型 部分代表 特点 列存储 Hbase Cassandra Hypertable 顾名思义,是按列存储数据的.最大的特点是方便存储结构化和半结构化数据,方便做数据压缩,对针对某一列或者某几列的查 ...
- #1054 - Unknown column 'category' in 'field list'
导致这个问题的原因有: 1.确实没有这个字段 2.写错表了,你以为写到想要的表,没想到写到别处去了,当然没有这个字段了,这时候检查一下sql语句是不是选错了表,或者选错了数据库
- ThinkPHP 多数据库自动连接设计
配置文件 database.php <?php return array( 'dbname1'=>'mysql://root:root@localhost/dbname1#utf8', ' ...
- shell脚本学习(四)
shell printf命令 printf是shell的另一个输出命令,默认printf不会自动添加换行我们可以手动添加\n. 语法: printf format-string [arguments. ...
- Python开发基础-Day5-字符编码、文件处理和函数基础(草稿)
字符编码 为什么要有字符编码? 字符编码是为了让计算机能识别我们人写的字符,因为计算机只认识高低电平,也就是二进制数"0","1". 一个文件用什么编码方式存储 ...
- AGC 014 B - Unplanned Queries
题面在这里! 很显然的一件事是,我们把路径覆盖改成两个点分别到根的路径覆盖,答案是不会变的,因为lca以上被覆盖了两次不变奇偶性.. 这么做的好处就是,我们只需要考虑每个点的覆盖次数带来的影响就行了, ...
- [AGC027F]Grafting
题意:给定两棵树,一次操作形如:选一个未被选过的叶子,改变它的一条出边,问能否在第一棵树上做一些操作使得它变成第二棵树,如果能则询问最小操作次数 如果答案不是$n$,那么存在一个点$r$没有被选中过 ...