Find the contiguous subarray within an array (containing at least one number) which has the largest product.

For example, given the array [2,3,-2,4],
the contiguous subarray [2,3] has the largest product = 6.

找数字连续最大乘积子序列。

思路:这个麻烦在有负数和0,我的方法,如果有0,一切都设为初始值。

对于两个0之间的数若有奇数个负数,那则有两种情况,第一种是不要第一个负数和之前的值,第二种是不要最后一个负数和之后的值,用negtiveFront和negtiveBack表示。没有负数就是不要第一个负数和之前的值的情况。

int maxProduct(int A[], int n) {
if(n == )
return ; int MaxAns = A[];
int negtiveFront = (A[] == ) ? : A[];
int negtiveBack = (A[] < ) ? : ; for(int i = ; i < n; i++)
{
if(A[i] == )
{
MaxAns = (MaxAns > ) ? MaxAns : ;
negtiveFront = ;
negtiveBack = ;
}
else if(A[i] < )
{
negtiveFront *= A[i];
MaxAns = max(negtiveFront, MaxAns);
if(negtiveBack == )
{
negtiveBack = ;
}
else
{
negtiveBack *= A[i];
MaxAns = max(negtiveBack, MaxAns);
}
}
else
{
negtiveFront *= A[i];
negtiveBack *= A[i];
MaxAns = max(negtiveFront, MaxAns);
if(negtiveBack > )
{
MaxAns = max(negtiveBack, MaxAns);
} }
} return MaxAns;
}

答案的思路:同时维护包括当前数字A[k]的最大值f(k)和最小值g(k)

f(k) = max( f(k-1) * A[k], A[k], g(k-1) * A[k] )
g(k) = min( g(k-1) * A[k], A[k], f(k-1) * A[k] )

再用一个变量Ans存储所有f(k)中最大的数字就可以了

int maxProduct2(int A[], int n) {
if(n == )
return ; int MaxAns = A[]; //包括当前A【i】的连续最大乘积
int MinAns = A[]; //包括当前A【i】的连续最小乘积
int MaxSoFar = A[]; //整个数组的最大乘积 for(int i = ; i < n; i++)
{
int MaxAnsTmp = MaxAns;
int MinAnsTmp = MinAns;
MaxAns = max(MaxAnsTmp * A[i], max(MinAnsTmp * A[i], A[i]));
MinAns = min(MinAnsTmp * A[i], min(MaxAnsTmp * A[i], A[i]));
MaxSoFar = max(MaxSoFar, MaxAns); } return MaxSoFar;
}

【leetcode】 Unique Binary Search Trees (middle)☆的更多相关文章

  1. 【leetcode】Unique Binary Search Trees

    Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...

  2. 【leetcode】Unique Binary Search Trees II

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  3. 【LeetCode】Unique Binary Search Trees II 异构二叉查找树II

    本文为大便一箩筐的原创内容,转载请注明出处,谢谢:http://www.cnblogs.com/dbylk/p/4048209.html 原题: Given n, generate all struc ...

  4. 【leetcode】 Unique Binary Search Trees II (middle)☆

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  5. 【leetcode】Unique Binary Search Trees (#96)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  6. 【题解】【BST】【Leetcode】Unique Binary Search Trees

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  7. 【Leetcode】【Medium】Unique Binary Search Trees

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  8. 【Leetcode】【Medium】Unique Binary Search Trees II

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  9. 【Leetcod】Unique Binary Search Trees II

    给定结点数n,结点值为1,2,...,n,求由这些结点可以构成的所有二叉查找树. Given n, generate all structurally unique BST's (binary sea ...

随机推荐

  1. ELK日志分析系统(转)

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://467754239.blog.51cto.com/4878013/1700828 ...

  2. linux配置java环境变量

    linux配置java环境变量(详细) 一. 解压安装jdk 在shell终端下进入jdk-6u14-linux-i586.bin文件所在目录, 执行命令 ./jdk-6u14-linux-i586. ...

  3. PHP 文件与目录操作函数总结

    >>>文件操作 打开 fopen();    打开文件 读取内容 fread();    从文件指针 handle 读取最多 length 个字节 readfile();    读入 ...

  4. PHP基础 数组函数 的总结

    <?php /** * PHP基础 数组操作函数 * * 指针函数:[类似于数据库的游标] 见例1.1 * current($arr)/pos 返回当前指针指向的元素 * key($arr) 返 ...

  5. POJ 2486 Apple Tree

    好抽象的树形DP......... Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6411 Accepte ...

  6. iOS并发编程指南之同步

    1.gcd fmdb使用了gcd,它是通过 建立系列化的G-C-D队列 从多线程同时调用调用方法,GCD也会按它接收的块的顺序来执行. fmdb使用的是dispatch_sync,多线程调用a ser ...

  7. jekyll 安装过程

    如果有, linux以源码包方式发布, 方便,快捷, 容易出错,安装内容难找到,版本容易冲突.兼容性会出错.如何解决这种方式:1.上网查找答案,你遇到的别人也有,关键词匹配到,好像没有别的办法解决了, ...

  8. shell简单使用

    最近需要用到shell脚本实现关机保护作用,总结下语法 要点: 1.linux下编写的shell脚本不能在window下编写,否则会出现^M的错误,用window编写保存,在linux用vim打开,每 ...

  9. 学习javascript系列之变量

    在javascript全局变量中,未加var声明的全局变量和加上var声明的全局变量是不同的,虽然都是window对象的属性. ; window.a //1 delete a //false; 通过v ...

  10. Unity路径规划

    Unity路径规划  转自:http://www.cnblogs.com/zsb517/p/4090629.html 背景 酷跑游戏中涉及到弯道.不规则道路. 找来一些酷跑游戏的案例来看,很多都是只有 ...