题目

在一棵树上选择最多的点,使得存在祖先关系的点满足\(w_x\leq w_y\),其中\(x\)是\(y\)的祖先


分析

祖先链上要满足\(LIS\),考虑将子节点的LIS序列合并至节点\(x\),

用启发式合并就可以做到\(O(nlog^2n)\),同时还要将\(w_x\)插入,

由于需要查询后继,所以用\(\text{STL::set}\)实现即可


代码

#include <cstdio>
#include <cctype>
#include <algorithm>
#include <set>
#define rr register
using namespace std;
const int N=200011; typedef long long lll;
struct node{int y,next;}e[N]; multiset<int>dp[N];
multiset<int>::iterator it; int k=1,as[N],a[N],n;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void dfs(int x,int fa){
for (rr int i=as[x];i;i=e[i].next){
dfs(e[i].y,x);
if (dp[x].size()<dp[e[i].y].size())
swap(dp[x],dp[e[i].y]);
for (it=dp[e[i].y].begin();it!=dp[e[i].y].end();)
dp[x].insert(*it),dp[e[i].y].erase(it++);
}
dp[x].insert(a[x]),it=dp[x].lower_bound(a[x]);
if (it!=dp[x].begin()) dp[x].erase(--it);
}
signed main(){
n=iut();
for (rr int i=1;i<=n;++i) a[i]=iut();
for (rr int i=2;i<=n;++i){
rr int x=iut();
e[++k]=(node){i,as[x]},as[x]=k;
}
dfs(1,0);
return !printf("%d",dp[1].size());
}

#启发式合并,LIS,平衡树#洛谷 4577 [FJOI2018]领导集团问题的更多相关文章

  1. 洛谷P4577 [FJOI2018]领导集团问题(dp 线段树合并)

    题意 题目链接 Sol 首先不难想到一个dp,设\(f[i][j]\)表示\(i\)的子树内选择的最小值至少为\(j\)的最大个数 转移的时候维护一个后缀\(mx\)然后直接加 因为后缀max是单调不 ...

  2. 【BZOJ5469】[FJOI2018]领导集团问题(动态规划,线段树合并)

    [BZOJ5469][FJOI2018]领导集团问题(动态规划,线段树合并) 题面 BZOJ 洛谷 题解 题目就是让你在树上找一个最大的点集,使得两个点如果存在祖先关系,那么就要满足祖先的权值要小于等 ...

  3. [FJOI2018]领导集团问题 mulitset合并

    P4577 [FJOI2018]领导集团问题 链接 luogu bzoj 他是个重题 bzoj4919: [Lydsy1706月赛]大根堆 代码改改就过了 思路 求树上的lis,要好好读题目的!!! ...

  4. [FJOI2018]领导集团问题

    [FJOI2018]领导集团问题 dp[i][j],i为根子树,最上面的值是j,选择的最大值 观察dp方程 1.整体Dp已经可以做了. 2.考虑优美一些的做法: dp[i]如果对j取后缀最大值,显然是 ...

  5. 5469: [FJOI2018]领导集团问题

    5469: [FJOI2018]领导集团问题 链接 题意: 要求在一棵树内选一个子集,满足子集内的任意两个点u,v,如果u是v的祖先,那么u的权值小于等于v. 分析: dp[u][i]表示在u的子树内 ...

  6. 题解-FJOI2018 领导集团问题

    题面 FJOI2018 领导集团问题 给一棵树 \(T(|T|=n)\),每个点有个权值 \(w_i\),从中选出一个子点集 \(P=\{x\in {\rm node}|x\in T\}\),使得 \ ...

  7. 「题解报告」P4577 [FJOI2018]领导集团问题

    题解 P4577 [FJOI2018]领导集团问题 题解区好像没有线段树上又套了二分的做法,于是就有了这片题解. 题目传送门 怀着必 WA 的决心交了两发,一不小心就过了. 题意 求一个树上最长不下降 ...

  8. P4577 [FJOI2018]领导集团问题

    P4577 [FJOI2018]领导集团问题 我们对整棵树进行dfs遍历,并用一个multiset维护对于每个点,它的子树可取的最大点集. 我们遍历到点$u$时: 不选点$u$,显然答案就为它的所有子 ...

  9. 【BZOJ1483】【HNOI2009】梦幻布丁(启发式合并,平衡树)

    [BZOJ1483][HNOI2009]梦幻布丁 题面 题目描述 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1 ...

  10. bzoj 4919 [Lydsy1706月赛]大根堆 set启发式合并+LIS

    4919: [Lydsy1706月赛]大根堆 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 599  Solved: 260[Submit][Stat ...

随机推荐

  1. Oracle日期格式化问题:to_date(sysdate,'yyyy-MM-dd')与 to_date(to_char(sysdate,'yyyy-MM-dd'),'yyyy-MM-dd')区别

    1.需求描述 对系统日期进行格式化,并仍保持日期类型 2.错误方法 直接使用to_date()实现 SELECT TO_DATE(SYSDATE,'YYYY-MM-DD') FROM DUAL; 这样 ...

  2. golang泛型简介

    linux下go版本安装(1.18.1版本) >>> wget https://go.dev/dl/go1.18.1.linux-amd64.tar.gz >>> ...

  3. glob模块(匹配所有符合条件的文件)

    函数功能介绍 匹配所有的符合条件的文件,并将其以list的形式返回. 通配符 "*":匹配零个或多个字符 "?":匹配任何单个字符 "[]" ...

  4. 【LeetCode二叉树#09】路径总和I+II,以及求根节点到叶节点数字之和(回溯回溯,还是™的回溯)

    路径总和 力扣题目链接(opens new window) 给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和. 说明: 叶子节点是指没有子节点的 ...

  5. 【Azure 云服务】Azure Cloud Service如何来设置固定IP地址(ReservedIP)

    问题描述 在云中环境,部署的应用到云服务(Cloud Service)都是动态的IP地址,所以在添加DNS记录的时候,都是使用CNAME,但如果需要在DNS中添加A记录,则需要一个固定IP. 解决方案 ...

  6. 【Azure 存储服务】存储在Azure Storage Table中的数据,如何按照条件进行删除呢?

    问题描述 如何按条件删除 Storage Table 中的数据,如果Table中有大量的条记录需要删除,Java代码如何按条件删除 Table中的数据(Entity)? (通过Azure Storag ...

  7. Java abstract 关键字使用

    1 package com.bytezreo.abstractTest; 2 3 /** 4 * 5 * @Description Abstract 关键字使用 6 * @author Bytezer ...

  8. 接入移动手机号一键登录类的封装,app应用,php服务端类的封装与调用

    需求:实现手机号一键登录,由于官方只有java的demo和jar包,没有php的sdk及demo <?php/* * 手机号一键登录加解密 */class Autophone{ const A_ ...

  9. 单麦克风AI降噪模块及解决方案

    前记   随着以AI为核心的智能设备的广泛发展,语音这个非常重要的入口一直是很多厂商争夺的市场.作为音频采集的前端设备,能采集到的距离远,清晰度高,无噪声的信号是一个非常重要的能力.这样就对音频前端降 ...

  10. python json实例解析

    python和json   python这个语言的流行程度不用我说了,估计大家都知道吧.在字符串处理领域,json真是神一样的存在.最近一个项目中用到了,才感觉到它的威力.感觉非常有必要做一个记录和总 ...