Robust Tracking via Weakly Supervised Ranking SVM
参考文献:Yancheng Bai and Ming Tang. Robust Tracking via Weakly Supervised Ranking SVM
Abstract
通常的算法:utilize the object information contained in the current and previous frames to construct the object appearance model and locate the object with the model in frame t+1
问题:if the visual appearance fluctuates in short time intervals, suboptimal locations will be generated in frame t+1 if the visual appearance change substantially from the model.The continuous changes would accumulate errors and finally result in a tracking failure.
解决方法:online Laplacian ranking support vector tracker(LRSVT) to robustly locate the object; incorporates the labeled information of the object in the initial and the latest frames to resist the occlusion and adapt to the fluctuation of the visual appearance, and the weakly labeled information from frame t+1 to adapt to substantial changes of the appearance.
1、Introduction
困难:to resist the visual appearance changing frame by frame due to 3Drotation, sudden illumination changing and partial occlusion.
经典算法包含:image representation, the appearance model and the dynamic model. (appearance model plays a crucial role).
本文重点:focus on the model-free tracking problem, i.e., no prior knowledge except for the object location is known at the beginning of tracking.
其他人的算法:
1)construct and update the appearance model only using the current frame
2)the mean shift
3)learned a low-dimensional subspace representation of the object frame by frame, efficiently adapting to appearance changes.
4)learned a classifier as the appearance model via multiple instance boosting. The weak classifiers were online updated by means of a forgetting factor.
5)constructed the appearance model by means of linear and sparse combination of target templates and trival ones. The template set was dynamically updated according to the similarity between the tracking result and the template set.
6)used the initial frame and the latest four frames to learn the appearance model by means of sparse principal component analysis of a set of feature templates.
7)By introducing the local spasrse appearance model ,extended the mean shift based tracking algorithm and modeled the appearance in terms of a static sparse dictionalry of the object in the initial frame and an online updated histogram of the current frame.
8)formulated the tracking problem as a semi-supervised one, where only the object bounding box in the first frame was considered as labeled, and all subsequent tracking results were letf unlabeled.(not good)
9)an online semi-supervised MILBoost tracker to combine the adptivity of multiple instance tracking and robustness aginst drifting of semi-supervised learning based tracking.
10)incorporated the positive and negative samples in the next frame to model the object appearance till the current frame, and located the object with the model in the next frame.
在substantially change下,这些模型不足。
文中的算法:
1)the target should be ranked higher than others around it
2)the relative relation between patches is easily figured out
3)extend the learning to rank algorithm, ranking SVM, to learn the relative relation.
4)provide rough loctions of the target object, i.e., some weakly labeled samples, in the next frame.
5)Based on above considerations, we propose a weakly supervised ranking SVM algorithm based on the smoothness assumption and the manifold regularization. called online Laplacian ranking suport vector tracking(LRSVT)
6)the labeled higher-ranked samples are composed of pathes very closed to the ground truth of the initial frame and those very close to the object locations in several most recent frames, and the labeled lower-ranked samples are those around the labeled higher-ranked ones. The weakly labeled higher-ranked samples are composed of patches close to that labeled as object patch by the weak labeler in the new frame.
7)These three sample sets are used to train the novel weakly supervised ranking SVM to result in the ranking function F(x).
8)then patches are sampled and ranked with the highest score by F(x) is accepted as the object location.
9)advantages:
incorporates the labeled information in the initial and the latest frames
incorporates the weakly labeled information in the next frame
2、Related Work
1)the topic of learning to rank, which combines relevance problems with prediction problems, has recently attracted considerable attention in machine learning community, and a great many of ranking algorithms have been proposed. The main goul of learning to rank is to automatically construct a ranking model based on the partial order of training data.
...
2)in the computer vision domian, learning to rank is mianly used in image and video retrieval.
3)learning to rank has begun to apply to other areas of computer vision. ..RankBoost...a two stage cascaded ranking SVMs detector
4)as a powerful machine learning technique, semi-supervised learning has been applied to cope with the visual object tracking problem.
3、Laplacian Ranking SVM
4、Tracking with Laplacian Ranking SVM
5、Experiments
6、Conclusions
Robust Tracking via Weakly Supervised Ranking SVM的更多相关文章
- [place recognition]NetVLAD: CNN architecture for weakly supervised place recognition 论文翻译及解析(转)
https://blog.csdn.net/qq_32417287/article/details/80102466 abstract introduction method overview Dee ...
- [CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...
- [CVPR2017] Weakly Supervised Cascaded Convolutional Networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #042eee } p. ...
- Kemaswill 机器学习 数据挖掘 推荐系统 Ranking SVM 简介
Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Le ...
- [CVPR2017] Deep Self-Taught Learning for Weakly Supervised Object Localization 论文笔记
http://openaccess.thecvf.com/content_cvpr_2017/papers/Jie_Deep_Self-Taught_Learning_CVPR_2017_paper. ...
- 2018年发表论文阅读:Convolutional Simplex Projection Network for Weakly Supervised Semantic Segmentation
记笔记目的:刻意地.有意地整理其思路,综合对比,以求借鉴.他山之石,可以攻玉. <Convolutional Simplex Projection Network for Weakly Supe ...
- Learning to Rank之Ranking SVM 简介
排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简 ...
- [ICCV 2019] Weakly Supervised Object Detection With Segmentation Collaboration
新在ICCV上发的弱监督物体检测文章,偷偷高兴一下,贴出我的poster,最近有点忙,话不多说,欢迎交流- https://arxiv.org/pdf/1904.00551.pdf http://op ...
- 【机器学习】Learning to Rank之Ranking SVM 简介
Learning to Rank之Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning t ...
随机推荐
- ubuntu 16.04 kinetic 安装rosbridge
sudo apt-get install ros-kinetic-rosbridge-server
- JavaScript权威指南--脚本化CSS
知识要点 客户端javascript程序员对CSS感兴趣的是因为样式可以通过脚本编程.脚本化css启用了一系列有趣的视觉效果.例如:可以创建动画让文档从右侧“滑入”.创造这些效果的javascript ...
- SqlServer和Oracle判断表和列是否存在
SqlServer .判断表Users是否存在 if object_id(N'Users',N'U') is not null print '存在' else print '不存在' .判断表User ...
- C#代码安装、卸载、监控Windows服务
C#编写Windows服务之后都不可避免的需要安装,卸载等操作.而传统的方式就是通过DOS界面去编写命令,这样的操作方式无疑会增加软件实施人员的工作量,下面就介绍一种简单.高效.快速方便的方式.1.安 ...
- ubuntu , 安装包的具体文件的查看方法
To see all the files the package installed onto your system, do this: dpkg-query -L <package_name ...
- mybatis: 多对多查询[转]
加入3个包 log4j-1.2.17.jar mybatis-3.3.0.jar mysql-connector-java-5.1.8.jar log4j需要配置 log4j.properties # ...
- 雷林鹏分享:Ruby 循环
Ruby 循环 Ruby 中的循环用于执行相同的代码块若干次.本章节将详细介绍 Ruby 支持的所有循环语句. Ruby while 语句 语法 while conditional [do] code ...
- 3-23Agile Web Development,3-24(chapter: 6)
第2章 Instant Gratification 复习 和 练习第一章,新建rails web页面. 重点: 知道了类,方法,实例变量 在rails是怎么用的. rails generate con ...
- spoj Prime Generator
题意:判断ll-rr范围内的质数. 一个个用miller-rabin算法判断 //#pragma comment(linker,"/STACK:1024000000,1024000000&q ...
- Gluttony CodeForces - 892D (构造,思维)
题面: You are given an array a with n distinct integers. Construct an array b by permuting a such that ...