python实现散列表的直接寻址法
散列表(Hash table,也叫哈希表),是根据键(Key)而直接访问在内存存储位置的数据结构。也就是说,它通过计算一个关于键值的函数,
将所需查询的数据映射到表中一个位置来访问记录,这加快了查找速度。这个映射函数称做散列函数,存放记录的数组称做散列表。
一个通俗的例子是,为了查找电话簿中某人的号码,可以创建一个按照人名首字母顺序排列的表,在首字母为W的表中查找“王”姓的电话号码,
显然比直接查找就要快得多。这里使用人名作为关键字,“取首字母”是这个例子中散列函数的函数法则,存放首字母的表对应散列表。关键字和函数法
则理论上可以任意确定。
它仅支持插入,查找和删除三类字典操作,在散列表中查找一个元素的时间在最坏的情况下是O(n),这和链表的操作时间一致。在实际中,散列
的效率是非常高的,最高的查找期望时间为O(1)
在关键字的全域U比较小时,直接寻址是一种简单有效的方法。具体思路是取关键字或关键字的某个线性函数值为散列地址。即{hash(k)=k}或
{hash(k)=a*k+b},其中{a,b}为常数(这种散列函数叫做自身函数)
python语言是非常简洁的,我把python源码和算法导论的伪码对比发现,这伪码到python源码几乎可以算是一一对应,所以,我这里就贴出了
python源码,即直观又简洁:
KEYS = (12,6554,12345,34234,234234,6456456,34234,67645,2343432,23423,1343324)
DELETED = -1
m=len(KEYS)
T=[None for _ in range(m)] def h1(k):
return k % m def HASH_INSERT(T,k):
j=h1(k)
if T[j]==None or T[j]==DELETED:
T[j]=k
return j def HASH_SEARCH(T,k):
j=h1(k)
if T[j] == k:
return j if T[j]==None:
return None def HASH_DELETE(T,k):
i=HASH_SEARCH(T,k)
if i is None:
raise Exception("key %s doesn't exist"%k)
T[i]=DELETED if __name__=='__main__':
for k in KEYS:
HASH_INSERT(T,k)
print "all keys:"
print(T) print "every key:"
for k in KEYS:
print(k,HASH_SEARCH(T,k)) print "del key1:"
HASH_DELETE(T,KEYS[1])
print(T) print "none keys:"
for k in KEYS:
if HASH_SEARCH(T,k) is None:
print(k) print "insert key1:"
HASH_INSERT(T,KEYS[1])
print(T)
运行结果:
all keys:
[234234, 12, 34234, 12345, 23423, None, 6456456, None, None, 6554, None]
every key:
(12, 1)
(6554, 9)
(12345, 3)
(34234, 2)
(234234, 0)
(6456456, 6)
(34234, 2)
(67645, None)
(2343432, None)
(23423, 4)
(1343324, None)
del key1:
[234234, 12, 34234, 12345, 23423, None, 6456456, None, None, -1, None]
none keys:
6554
67645
2343432
1343324
insert key1:
[234234, 12, 34234, 12345, 23423, None, 6456456, None, None, 6554, None]
python实现散列表的直接寻址法的更多相关文章
- python实现散列表的链表法
在散列中,链接法是一种最简单的碰撞解决技术,这种方法的原理就是把散列到同一槽中的所有元素 都放在一个链表中. 链接法有两个定理,定理一: 在简单一致散列的假设下,一次不成功查找的期望时间为O(1 + ...
- Python数据结构——散列表
散列表的实现常常叫做散列(hashing).散列仅支持INSERT,SEARCH和DELETE操作,都是在常数平均时间执行的.需要元素间任何排序信息的操作将不会得到有效的支持. 散列表是普通数组概念的 ...
- Python:说说字典和散列表,散列冲突的解决原理
散列表 Python 用散列表来实现 dict.散列表其实是一个稀疏数组(总是有空白元素的数组称为稀疏数组).在一般书中,散列表里的单元通常叫做表元(bucket).在 dict 的散列表当中,每个键 ...
- 散列表(hash table)——算法导论(13)
1. 引言 许多应用都需要动态集合结构,它至少需要支持Insert,search和delete字典操作.散列表(hash table)是实现字典操作的一种有效的数据结构. 2. 直接寻址表 在介绍散列 ...
- 《算法导论》— Chapter 11 散列表
1 序 在很多应用中,都要用到一种动态集合结构,它仅支持INSERT.SEARCH以及DELETE三种字典操作.例如计算机程序设计语言的编译程序需要维护一个符号表,其中元素的关键字为任意字符串,与语言 ...
- Python与数据结构[4] -> 散列表[2] -> 开放定址法与再散列的 Python 实现
开放定址散列法和再散列 目录 开放定址法 再散列 代码实现 1 开放定址散列法 前面利用分离链接法解决了散列表插入冲突的问题,而除了分离链接法外,还可以使用开放定址法来解决散列表的冲突问题. 开放定 ...
- Python与数据结构[4] -> 散列表[1] -> 分离链接法的 Python 实现
分离链接法 / Separate Chain Hashing 前面完成了一个基本散列表的实现,但是还存在一个问题,当散列表插入元素冲突时,散列表将返回异常,这一问题的解决方式之一为使用链表进行元素的存 ...
- 【Python算法】哈希存储、哈希表、散列表原理
哈希表的定义: 哈希存储的基本思想是以关键字Key为自变量,通过一定的函数关系(散列函数或哈希函数),计算出对应的函数值(哈希地址),以这个值作为数据元素的地址,并将数据元素存入到相应地址的存储单元中 ...
- Python与数据结构[4] -> 散列表[0] -> 散列表与散列函数的 Python 实现
散列表 / Hash Table 散列表与散列函数 散列表是一种将关键字映射到特定数组位置的一种数据结构,而将关键字映射到0至TableSize-1过程的函数,即为散列函数. Hash Table: ...
随机推荐
- 【Android源码解析】View.post()到底干了啥
emmm,大伙都知道,子线程是不能进行 UI 操作的,或者很多场景下,一些操作需要延迟执行,这些都可以通过 Handler 来解决.但说实话,实在是太懒了,总感觉写 Handler 太麻烦了,一不小心 ...
- 从Windows迁移SQL Server到Linux
前一篇博客关于SQL Server on Linux的安装,地址:http://www.cnblogs.com/fishparadise/p/8057650.html,现在测试把Windows平台下的 ...
- STL之容器适配器stack的实现框架
说明:本文仅供学习交流,转载请标明出处,欢迎转载! 一提到适配器(adapter).我们就想到了早期用电话线上网所用的调制解调器,俗称"猫"."猫"的作用是实现 ...
- Android最佳性能实践(四)——布局优化技巧
转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/43376527 在前面几篇文章其中.我们学习了怎样通过合理管理内存,以及高性能编码技 ...
- Bayan 2015 Contest Warm Up D题(GCD)
D. CGCDSSQ time limit per test 2 seconds memory limit per test 256 megabytes input standard input ou ...
- laravel会话驱动扩展—连接自定义会话管理系统
laravel 版本:5.3.* 用laravel开发公司信息系统过程中,由于业务或安全问题的考虑,会有一些特殊的用户会话管理方面的需求,如多个子系统会话统一管理或A系统业务操作导致B系统中某些在线用 ...
- CentOS下nginx php mysql 环境搭建
CentOS下搭建PHP运行环境. 首先是在虚拟机上装好一个命令行的CentOS,如果只是弄服务器的话,不要装图形界面,会比较卡. 一.安装编译工具及库文件 yum -y install make z ...
- intelliJ IDEA自动优化导入包设置
Settings→Editor→General→Auto Import 选中Optimize imports on the fly和Add unambiguous imports on the fly ...
- Android百分比布局成功导入及简单使用
最近学习第一行代码第二版这本书,里面有介绍百分比布局的使用,经过一番摸索,终于是成功导入了百分比布局 就是这样,appcompat是25.3.1,那么百分比布局percent也是25.3.1 这样便是 ...
- IOC容器在web容器中初始化过程——(二)深入理解Listener方式装载IOC容器方式
先来看一下ContextServletListener的代码 public class ContextLoaderListener extends ContextLoader implements S ...