MongoDB聚合(count、distinct、group、MapReduce)
1. count:返回集合中文档的数量。
db.friend.count()
db.friend.count({'age':24})
增加查询条件会使count查询变慢。
2. distinct:找出给定键的所有不同的值。
使用时必须指定集合和键:
db.runCommand({'distinct':'friend','key':'age'})
3. group:分组统计。
示例:找出相同年龄(age)中,积分(score)最高的人。

参数说明:
ns:指定要进行分组的集合。
key:指定文档分组依据的键,键值相同的所有文档分为一组。
initial:每一组reduce函数调用时作为第二个参数传递给reduce函数的初始文档,每一组的所有成员都会
使用这个累加器,所以改变会被保留住。
$reduce:每个文档都对应一次这个调用,两个参数分别是当前文档和累加器文档(本组当前的结果)。
每一组都有一个独立的累加器存储本分组的结果。
condition:只处理满足条件的文档。
finalize:函数,完成器,在每组结果传递到客户端之前被调用一次,用以精简从数据库传到用户的数据。
例如,在上面的例子中可以在group中加入finalize参数来去除结果中的’age’键:
‘finalize’: function(prev) {
delete prev.age;
}
(参数prev是每个分组结果文档)
$keyf:将函数作为键使用,用作分组依据。当分组依据变得复杂,不再只是一个简单的键值那么简单的时候,
’key’参数已经无法满足需求,此时可以使用’$keyf’参数,它可以依据各种复杂的条件进行分组。
使用场景之一:依据分组键值进行分组,但忽略大小写。
‘$keyf’: function(x) {
return {‘name’:x.name.toLowerCase()};
}
(参数x表示当前文档对象,返回值一定要是一个对象,对象的键即是分组键。group中不能同时包含key参数和$keyf参数)
注意:分组依据键不存在的文档会被分到一组,并显示键值为null,可以在condition参数中加入{‘$exists’:true}来去掉这一组。
4. MapReduce:
使用MapReduce的代价就是速度慢,不能用在“实时”环境中。要作为后台任务来运行MapReduce,创建一个
保存结果的集合,然后对这个集合进行实时查询。
示例:找出集合中的所有键。

参数说明:
mapreduce:字符串,指定需要进行MapReduce操作的集合的名称。
map:函数,分组函数,将集合中的文档根据某个键的值进行分组(一个文档调用一次)。
reduce:函数,每个分组的处理函数(一个分组调用一次)。
在以上例子中,执行完map函数之后,传递给reduce函数的参数格式类似:key为’age’,
emits为[{‘count’:1},{‘count’:1},{‘count’:1}...]。
最终产生的结果集中”_id”键值为分组key的键值,”value”则是reduce函数返回的内容,目前reduce函数
不支持返回数组,会报错:multiple not supported yet。
finalize:函数,处理reduce调用之后产生的结果,MapReduce的最后一步(一般用于清除多余信息)。
keeptemp:布尔,连接关闭时临时结果集合是否保存。
out:字符串,结果集名称,设置该项则隐含着keeptemp:true。
不指定’out’参数会报错:’out’ has to be a string or an object。
query:文档,发往map函数前先使用指定条件过滤文档。
sort:文档,发往map函数前先给文档排序。
limit:整数,发往map函数的文档数量的上限。
scope:文档,JavaScript代码中要用到的变量。
scope是MapReduce的作用域键,可以使用“变量名:值”这样的普通文档来设置该选项,然后在map、reduce和
finalize函数中就能使用了。
verbose:布尔,是否产生更加详细的服务器日志。(查看MapReduce的运行过程,也可以用print把map、reduce、
finalize过程中的信息输出到服务器日志上。)
每个传递给map函数的文档都要事先反序列化,从BSON转换成JavaScript对象,这个过程非常耗资源。要是事先能
确定只对集合的一部分文档执行MapReduce,使用query、sort、limit来增加一层过滤层会极大地提高速度。
可以在MapReduce操作产生的结果集合上再进行MapReduce操作!
Group的结果集有4MB的大小限制,MapReduce则没有这个限制。
group和MapReduce对比示例:查询相同年龄人的名字。
(1)group:

(2)MapReduce:

MongoDB聚合(count、distinct、group、MapReduce)的更多相关文章
- MongoDB count distinct group by JavaAPI查询
import java.net.UnknownHostException; import com.mongodb.BasicDBList; import com.mongodb.BasicDBObje ...
- MongoDB聚合运算之group和aggregate聚集框架简单聚合(10)
聚合运算之group 语法: db.collection.group( { key:{key1:1,key2:1}, cond:{}, reduce: function(curr,result) { ...
- MongoDB 聚合函数
概念 聚合函数是对一组值执行计算并返回单一的值 主要的聚合函数 count distinct Group MapReduce 1.count db.users.count() db.users.cou ...
- ElasticSearch中"distinct","count"和"group by"的实现
最近在业务中需要使用ES来进行数据查询,在某些场景下需要对数据进行去重,以及去重后的统计.为了方便大家理解,特意从SQL角度,方便大家能够理解ES查询语句. 1 - distinct ; { &quo ...
- MongoDB 聚合 (转) 仅限于C++开发
MongoDB除了基本的查询功能,还提供了很多强大的聚合工具,其中简单的可计算集合中的文档个数, 复杂的可利用MapReduce做复杂数据分析. 1.count count返回集合中的文档数量 db. ...
- MongoDB学习笔记——聚合操作之group,distinct,count
单独的聚合命令(group,distinct,count) 单独聚合命令 比aggregate性能低,比Map-reduce灵活度低:但是可以节省几行javascript代码,后面那句话我自己加的,哈 ...
- mongodb MongoDB 聚合 group
MongoDB 聚合 MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果.有点类似sql语句中的 count(*). 基本语法为:db.col ...
- mongodb MongoDB 聚合 group(转)
MongoDB 聚合 MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果.有点类似sql语句中的 count(*). 基本语法为:db.col ...
- mongodb聚合 group
MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果.有点类似sql语句中的 count(*). 基本语法为:db.collection.agg ...
随机推荐
- lincode.41 最大子数组
最大子数组 描述 笔记 数据 评测 给定一个整数数组,找到一个具有最大和的子数组,返回其最大和. 注意事项 子数组最少包含一个数 您在真实的面试中是否遇到过这个题? Yes 哪家公司问你的这个题? ...
- PHP 安装配置
./configure --prefix=/usr/local/php --with-libdir=/lib/x86_64-linux-gnu --with-config-file-path=/usr ...
- uva 10391
这个题,单纯做出来有很多种方法,但是时间限制3000ms,因此被TL了不知道多少次,关键还是找对最优解决方法,代码附上: #include<bits/stdc++.h> using nam ...
- 配置 VirtualBox backend - 每天5分钟玩转 Docker 容器技术(75)
Rexy-Ray 支持多种 backend,上一节我们已经安装配置了 Rex-Ray,今天演示如何配置 VirtualBox backend. 在 VirtualBox 宿主机,即我的笔记本上启动 v ...
- 关于 String 自我理解
String 的一些认识: String对象是不可变,所以使用 final 修饰 字符串拼接,合理利用 StringBuilder(线程非安全),StringBuffer 线程安全 常用方法就不详细介 ...
- Divisors poj2992
Divisors Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9940 Accepted: 2924 Descript ...
- eclipse建立一个jsp项目遇到的问题及解决
打开eclipse 在workplace 区域空白处,右键 填写好Project name,之后,点击finished 即可. 选中webcontent,新建一个文件夹,并新建一个jsp 文件 新建 ...
- Elasticsearch 数据搜索
ES即简单又复杂,你可以快速的实现全文检索,又需要了解复杂的REST API.本篇就通过一些简单的搜索命令,帮助你理解ES的相关应用.虽然不能让你理解ES的原理设计,但是可以帮助你理解ES,探寻更多的 ...
- python之路第五篇之装饰器:(进阶篇)
装饰器: 学前必备知识: def f1(): print "f1" f1() #表示函数执行 f1 #表示函数,指向内存地址 f1 = lambda x: x + 1 f1() # ...
- C#实现基于ffmepg加虹软的人脸识别
关于人脸识别 目前的人脸识别已经相对成熟,有各种收费免费的商业方案和开源方案,其中OpenCV很早就支持了人脸识别,在我选择人脸识别开发库时,也横向对比了三种库,包括在线识别的百度.开源的OpenCV ...