【十大经典数据挖掘算法】系列

  1. C4.5
  2. K-Means
  3. SVM
  4. Apriori
  5. EM
  6. PageRank
  7. AdaBoost
  8. kNN
  9. Naïve Bayes
  10. CART

我特地把PageRank作为【十大经典数据挖掘算法】系列的收尾篇,是因为本人是Google脑残粉。因了PageRank而Google得以成立,因了Google而这个世界变得好了那么一点点。

1. 引言

PageRank是Sergey Brin与Larry Page于1998年在WWW7会议上提出来的,用来解决链接分析中网页排名的问题。在衡量一个网页的排名,直觉告诉我们:

  • 当一个网页被更多网页所链接时,其排名会越靠前;
  • 排名高的网页应具有更大的表决权,即当一个网页被排名高的网页所链接时,其重要性也应对应提高。

对于这两个直觉,PageRank算法所建立的模型非常简单:一个网页的排名等于所有链接到该网页的网页的加权排名之和:

\begin{equation}
PR_i = \sum_{(j,i)\in E} \frac{PR_j}{O_j}
\label{eq:pr1}
\end{equation}

\(PR_i\)表示第\(i\)个网页的PageRank值,用以衡量每一个网页的排名;若排名越高,则其PageRank值越大。网页之间的链接关系可以表示成一个有向图\(G=(V,E)\),边\((j,i)\)代表了网页\(j\)链接到了网页\(i\);\(O_j\)为网页\(j\)的出度,也可看作网页\(j\)的外链数( the number of out-links)。

假定\(P=(PR_1, PR_2, \cdots, PR_n)^T\)为n维PageRank值向量,\(A\)为有向图\(G\)所对应的转移矩阵,

\[
A_{ij}=\left \{
{
\matrix {
\frac{1}{O_i} & if \ (i,j) \in E \cr
0 & otherwise
}
}
\right.
\]

\(n\)个等式\eqref{eq:pr1}可改写为矩阵相乘:

\begin{equation}
P = A^T P
\label{eq:pr2}
\end{equation}

但是,为了获得某个网页的排名,而需要知道其他网页的排名,这不就等同于“是先有鸡还是先有蛋”的问题了么?幸运的是,PageRank采用power iteration方法破解了这个问题怪圈。欲知详情,请看下节分解。

2. 求解

为了对上述及以下求解过程有个直观的了解,我们先来看一个例子,网页链接关系图如下图所示:

那么,矩阵\(A\)即为

所谓power iteration,是指先给定一个\(P\)的初始值\(P^0\),然后通过多轮迭代求解:

\[
P^k = A^TP^{k-1}
\]

最后收敛于\(||P^k-P^{k-1}|| < \xi\),即差别小于某个阈值。我们发现式子\eqref{eq:pr2}为一个特征方程(characteristic equation),并且解\(P\)是当特征值(eigenvalue)为\(1\)时的特征向量(eigenvector)。为了满足\eqref{eq:pr2}是有解的,则矩阵\(A\)应满足如下三个性质:

  • stochastic matrix,则行至少存在一个非零值,即必须存在一个外链接(没有外链接的网页被称为dangling pages);
  • 不可约(irreducible),即矩阵\(A\)所对应的有向图\(G\)必须是强连通的,对于任意两个节点\(u,v \in V\),存在一个从\(u\)到\(v\)的路径;
  • 非周期性(aperiodic),即每个节点存在自回路。

显然,一般情况下矩阵\(A\)这三个性质均不满足。为了满足性质stochastic matrix,可以把全为0的行替换为\(\mathrm{e}/n\),其中\(e\)为单位向量;同时为了满足性质不可约、非周期,需要做平滑处理:

\[
P=\left( (1-d)\frac{\mathrm{E}}{n} + dA^T\right)
\]

其中,\(d\)为 damping factor,常置为0与1之间的一个常数;\(E\)为单位阵。那么,式子\eqref{eq:pr1}被改写为

\[
PR_i = (1-d) + d\sum_{(j,i)\in E} \frac{PR_j}{O_j}
\]

3. 参考资料

[1] Bing Liu and Philip S. Yu, "The Top Ten Algorithms in Data Mining" Chapter 6.

【十大经典数据挖掘算法】PageRank的更多相关文章

  1. 【十大经典数据挖掘算法】EM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 极大似然 极大似然(Maxim ...

  2. 【十大经典数据挖掘算法】AdaBoost

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensem ...

  3. 【十大经典数据挖掘算法】SVM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...

  4. 【十大经典数据挖掘算法】Naïve Bayes

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...

  5. 【十大经典数据挖掘算法】C4.5

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...

  6. 【十大经典数据挖掘算法】k-means

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...

  7. 【十大经典数据挖掘算法】Apriori

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 关联分析 关联分析是一类非常有 ...

  8. 【十大经典数据挖掘算法】kNN

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...

  9. 【十大经典数据挖掘算法】CART

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 前言 分类与回归树(Class ...

随机推荐

  1. 在windows下安装gulp —— 基于 Gulp 的前端集成解决方案(一)

    相关连接导航 在windows下安装gulp —— 基于 Gulp 的前端集成解决方案(一) 执行 $Gulp 时发生了什么 —— 基于 Gulp 的前端集成解决方案(二) 常用 Gulp 插件汇总 ...

  2. 来吧,HTML5之基础标签(下)

    <dialog> 标签 定义对话框或窗口. <dialog> 标签是 HTML 5 的新标签.目前只有 Chrome 和 Safari 6 支持 <dialog>  ...

  3. Linux之搭建自己的根文件系统

    Hi!大家好,我是CrazyCatJack.又和大家见面了.今天给大家带来的是构建Linux下的根文件系统.希望大家看过之后都能构建出符合自己需求的根文件系统^_^ 1.内容概述 1.构造过程 今天给 ...

  4. Springboot搭建web项目

    最近因为项目需要接触了springboot,然后被其快速零配置的特点惊呆了.关于springboot相关的介绍我就不赘述了,大家自行百度google. 一.pom配置 首先,建立一个maven项目,修 ...

  5. Kotlin中变量不同于Java: var 对val(KAD 02)

    原文标题:Variables in Kotlin, differences with Java. var vs val (KAD 02) 作者:Antonio Leiva 时间:Nov 28, 201 ...

  6. Android的Kotlin秘方(II):RecyclerView 和 DiffUtil

    作者:Antonio Leiva 时间:Sep 12, 2016 原文链接:http://antonioleiva.com/recyclerview-diffutil-kotlin/ 如你所知,在[支 ...

  7. Atiti.大企业病与小企业病 大公司病与小公司病

    Atiti.大企业病与小企业病 大公司病与小公司病 1. 大企业病,一般会符合机构臃肿 .多重领导 .人才流失的特点.1 2. 大企业病避免方法1 3. 小企业病 1 3.1.1. 表现1 4. 如何 ...

  8. ORACLE分区表梳理系列(二)- 分区表日常维护及注意事项(红字需要留意)

    版权声明:本文发布于http://www.cnblogs.com/yumiko/,版权由Yumiko_sunny所有,欢迎转载.转载时,请在文章明显位置注明原文链接.若在未经作者同意的情况下,将本文内 ...

  9. Linux基础介绍【第二篇】

    远程连接Linux的原理 SHH远程连接介绍 当前,在几乎所有的互联网企业环境中,最常用的Linux提供远程连接服务的工具就是SSH软件,SSH分为SSH客户端和SSH服务端两部分.其中,SSH服务端 ...

  10. HTML5 标签 details 展开 搜索

    details有一个新增加的子标签--summary,当鼠标点击summary标签中的内容文字时,details标签中的其他所有元素将会展开或收缩. 默认状态为 收缩状态 设置为展开状态为 <d ...