不知道错在哪里,永远T

/*
引理:a,n互质,则满足a^x=1(mod n)的最小正整数x0是φ(n)的约数
思路:求出d=gcd(L,8)
求出φ(9L/d)的约数集合,再枚举约数x,是否满足10^x = 1 (mod 9L/d)
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long ll l,d,phi,m,factor[];
ll v[],prime[],mm;
void init(ll n){
memset(v,,sizeof v);
memset(prime, ,sizeof prime);
mm=;
for(int i=;i<=n;i++){
if(v[i]==){
v[i]=i;
prime[++mm]=i;
}
for(int j=;j<=m;j++){
if(prime[j]>v[i] || prime[j]*i>n) break;
v[i*prime[j]]=prime[j];
}
}
} ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll f(ll n){
ll res=n;//和1互质
for(int i=;i<=mm;i++){
if(prime[i]>n) break;
if(n%prime[i]==) res=res/prime[i]*(prime[i]-);
while(n%prime[i]==)
n/=prime[i];
}
if(n>) res=res/n*(n-);
return res;
}
ll mul(ll a,ll b,ll m)
{
ll res=;
while(b)
{
if(b&) res+=a;
if(res>m) res-=m;
a+=a;
if(a>m)
a-=m;
b>>=;
}
return res;
}
ll pow(ll a,ll b,ll m)
{
ll res=;
while(b)
{
if(b&) res=mul(res,a,m);
a=mul(a,a,m);
b>>=;
}
return res;
} int main(){
int tt=;
init(sqrt());
while(scanf("%lld",&l),l){
d=gcd(l,);
phi=f(*l/d);
if(gcd(,*l/d)!=) {
printf("Case %d: 0\n",++tt);
continue;
}
m=;
for(int i=;i*i<=phi;i++)
if(phi%i==){
factor[++m]=i;
if(i!=phi/i) factor[++m]=phi/i;
} //从小到大枚举每个约数
ll mod=*l/d,flag=;
sort(factor+,factor++m);
for(int i=;i<=m;i++){
if(pow(,factor[i],mod)%mod==){
flag=;
printf("Case %d: %lld\n",++tt,factor[i]);
break;
}
}
if(flag==) printf("Case %d: 0\n",++tt);
}
return ;
}

poj3696 欧拉函数引用的更多相关文章

  1. poj3696 快速幂的优化+欧拉函数+gcd的优化+互质

    这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...

  2. 「POJ3696」The Luckiest number【数论,欧拉函数】

    # 题解 一道数论欧拉函数和欧拉定理的入门好题. 虽然我提交的时候POJ炸掉了,但是在hdu里面A掉了,应该是一样的吧. 首先我们需要求的这个数一定可以表示成\(\frac{(10^x-1)}{9}\ ...

  3. 【poj2478-Farey Sequence】递推求欧拉函数-欧拉函数的几个性质和推论

    http://poj.org/problem?id=2478 题意:给定一个数x,求<=x的数的欧拉函数值的和.(x<=10^6) 题解:数据范围比较大,像poj1248一样的做法是不可行 ...

  4. 51nod1040 最大公约数之和,欧拉函数或积性函数

    1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 看起来很简单 ...

  5. HYSBZ - 3813 奇数国 欧拉函数+树状数组(线段树)

    HYSBZ - 3813奇数国 中文题,巨苟题,巨无敌苟!!首先是关于不相冲数,也就是互质数的处理,欧拉函数是可以求出互质数,但是这里的product非常大,最小都2100000,这是不可能实现的.所 ...

  6. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  7. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  8. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  9. COGS2531. [HZOI 2016]函数的美 打表+欧拉函数

    题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k ...

随机推荐

  1. python3写入文件时编码问题报错

    在字符串写入文件时,有时会因编码问题导致无法写入,可在open方法中指定encoding参数 chfile = open(filename, 'w', encoding='utf-8') 这样可解决大 ...

  2. EasyUI的onLoadSuccess方法

    EasyUI加载表单的时候,对表单内行数据进行判断,可以赋颜色,也可以进行其他操作 onLoadSuccess:function(data) { for(var i=0;i<data.rows. ...

  3. linux下编译出现tmp空间不足解决办法

    编译的时候出现问题: fatal error: error writing to /tmp/ccHqgMoi.s: No space left on device 原因 : 系统 /tmp/空间不足, ...

  4. CentOS6.8下Jenkins+maven+tomcat+git+shell自动构建、部署web应用环境的搭建

    参考资料:http://www.cnblogs.com/cheng95/p/6542036.html http://www.cnblogs.com/software-test/p/7068278.ht ...

  5. 骨骼动画的原理及在Unity中的使用

    制作骨骼动画 我们看看这几步操作后,我们得到了那些数据: 1.每个皮肤顶点的初始世界坐标. 2.每个骨骼关节顶点的初始世界坐标. 3.每个顶点被骨骼顶点的影响信息. 4.骨骼如何移动. 骨骼动画原理 ...

  6. Neural Networks and Deep Learning 课程笔记(第三周)浅层神经网络(Shallow neural networks)

    3.1 神经网络概述(Neural Network Overview ) (神经网络中,我们要反复计算a和z,最终得到最后的loss function) 3.2 神经网络的表示(Neural Netw ...

  7. Nginx 学习笔记(三)proxy_cache 缓存配置和ngx_cache_purge模块

    反向代理的缓存清理 一.proxy_cache配置 (1)如何配置和安装,都在这里了:https://github.com/Tinywan/Lua-Nginx-Redis/blob/master/Ng ...

  8. Zabbix LLD 设置过滤条件,不自动监控某些item

    1.需求描述        默认情况下Zabbix 自带模板 "Template OS Linux" 中网络接口LLD自动发现除还回接口外的所有接口,当这并不一定是我们想要的结果. ...

  9. 基于Selenium的Web自动化框架增强篇

    在写完上一篇“基于Selenium的Web自动化框架”(http://www.cnblogs.com/AlwinXu/p/5836709.html)之后一直没有时间重新审视该框架,正好趁着给同事分享的 ...

  10. SQL 语言类型

    结构化查询语言(Structured Query Language),简称SQL,是数据库编程的核心语言. SQL的发展是从1974年开始的,其发展过程如下: 1974年 - 由Boyce和Chamb ...