Gaussian discriminant analysis 高斯判别分析
高斯判别分析(附Matlab实现)
生成学习算法
高斯判别分析(Gaussian Discriminant analysis,GDA),与之前的线性回归和Logistic回归从方法上讲有很大的不同,GDA是一种生成学习算法(Generative Learning Algorithms),而之前的属于判别学习算法(Discriminative Learning Algorithms)。
它们的主要区别是:
判别学习算法是直接训练出p(y|x);
生成学习算法是分别训练出各个类别的概率模型,之后再用Bayes公式算法出p(y|x);
通俗的说,判别模型是通过训练样本训练出一个模型,再用测试点x带入这个模型,最后算出x的可能类别;而生成学习模型是通过训练样本训练出各个类别的多个模型,再将预测点x分别代入不同类别的模型中,进而判断x到底属于哪个类别(一般就看代入后那个模型的概率大就认为x是哪一类,当然也有例外)。
高斯判别分析
GDA就是一种生成学习算法,通过生成不同类别的模型,再进一步估计出预测样本的具体类别,为了简化问题,这里只讲二分类情况下的问题。
前提:
条件概率p(x|y)服从多维正态分布,且输入特征x是连续且随机的。
其分布函数为:
其中p(y)为类别i的先验概率,φ为y=1的先验概率值,μ0和μ1分别为y=0和y=1的期望,Σ为样本的协方差,由此可以看出y是服从Bernoulli(φ)的分布,x|y=0和x|y=1分别服从N(μ0,Σ)和N(μ1,Σ)。
Ps:这里y=0和y=1时用的是同一个协方差,至于为什么?我感觉很难说清
其似然函数如下
为了使似然函数达到最大,可得和参数的估计值为
有了这些估计值我们就能生成属于各个类别的模型了。
In Matlab
这代码其实很简单,分别算出各参数的值,再带入matlab预有的生成函数就行
代码如下:
clear all; close all; clc % data x = [0.230000 0.394000;
0.238000 0.524000;
0.422000 0.494000;
0.364000 0.556000;
0.320000 0.448000;
0.532000 0.606000;
0.358000 0.660000;
0.144000 0.442000;
0.124000 0.674000;
0.520000 0.692000;
0.410000 0.086000;
0.344000 0.154000;
0.490000 0.228000;
0.622000 0.366000;
0.390000 0.270000;
0.514000 0.142000;
0.616000 0.180000;
0.576000 0.082000;
0.628000 0.286000;
0.780000 0.282000]; x1 = x(:,1);
x2 = x(:,2); y = [0;
0;
0;
0;
0;
0;
0;
0;
0;
0;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1]; [m, n] = size(x); % plot the datas
figure
pos = find(y); neg = find(y == 0); %find是找到的一个向量,其结果是find函数括号值为真时的值的编号
plot(x(pos, 1), x(pos, 2), '+')
hold on
plot(x(neg, 1), x(neg, 2), 'o')
hold on
xlabel('axis X')
ylabel('axis Y') m_ones = ones(m,1); % 20 * 1的矩阵,元素全为1 sum0 = (1-y)' * m_ones; % 标记为0的样本个数
sum1 = y' * m_ones; % 标记为1的样本个数 mu0 = [(1-y)'*x1/sum0 (1-y)'*x2/sum0]; % 标记为0的期望
mu1 = [y'*x1/sum1 y'*x2/sum1]; % 标记为1的期望 sigma = cov(x1,x2); % 协方差 [x y]=meshgrid(linspace(0,1,50)',linspace(0,1,50)');
X=[x(:) y(:)];
z1=mvnpdf(X,mu0,sigma);
contour(x,y,reshape(z1,50,50),4);
hold on; [x y]=meshgrid(linspace(0,1,50)',linspace(0,1,50)');
X=[x(:) y(:)];
z2=mvnpdf(X,mu1,sigma);
contour(x,y,reshape(z2,50,50),4);
hold off
效果图如下:
标准的结果应该是这样的:
感觉好像一样,又感觉好像不一样,也不知道我这到底错没错,也许是训练集没有服从高斯分布吧,等有空再找个服从高斯分布的样本集试试。
拓展
当将p(y=1|x;φ,μ0,μ1,Σ)看成是一个x的函数时,可以发现p(y=1|x)将会近似成一个Logistic函数。如下图(画的难看,见谅)
分布函数可以写成
其中θ是φ,μ0,μ1,Σ的函数。其实这个函数也就是这个问题的判别学习算法形式了。
那问题自然就来了,到底选哪一个会更好呢?
当然通常的回答肯定不会出现绝对哪一个会更好,要不差的那个根本就没有存在的价值了嘛,依然是具体问题具体分析,我相信机器学习中的很多问题都是这样的,看你对数据的理解程度了。
这里有几个tips可以帮助我们做判断,至于要讲出个之所以然来,我想,任重而道远啊。
1、当x|y服从多维高斯分布时,则其后验概率y|x服从Logistic回归;但反过来并不成立。
2、当已知x|y服从高斯分布,则GDA是一个好的选择,若不服从高斯分布,却使用了GDA,其表达效果往往没有Logistic回归好。----GDA是一个更强条件的分类算法
3、若x|y=0和x|y=1都服从Poisson分布(指数分布族),则y|x也遵守Logistic回归
Gaussian discriminant analysis 高斯判别分析的更多相关文章
- 机器学习理论基础学习3.4--- Linear classification 线性分类之Gaussian Discriminant Analysis高斯判别模型
一.什么是高斯判别模型? 二.怎么求解参数?
- 高斯判别分析 Gaussian Discriminant Analysis
如果在我们的分类问题中,输入特征xx是连续型随机变量,高斯判别模型(Gaussian Discriminant Analysis,GDA)就可以派上用场了. 以二分类问题为例进行说明,模型建立如下: ...
- 生成式学习算法(三)之----高斯判别分析模型(Gaussian Discriminant Analysis ,GDA)
高斯判别分析模型(Gaussian Discriminant Analysis ,GDA) 当我们分类问题的输入特征$x $为连续值随机变量时,可以用高斯判别分析模型(Gaussian Discrim ...
- 高斯判别分析模型( Gaussian discriminant analysis)及Python实现
高斯判别分析模型( Gaussian discriminant analysis)及Python实现 http://www.cnblogs.com/sumai 1.模型 高斯判别分析模型是一种生成模型 ...
- Gaussian Discriminant Analysis
如果在我们的分类问题中,输入特征$x$是连续型随机变量,高斯判别模型(Gaussian Discriminant Analysis,GDA)就可以派上用场了. 以二分类问题为例进行说明,模型建立如下: ...
- 机器学习: Linear Discriminant Analysis 线性判别分析
Linear discriminant analysis (LDA) 线性判别分析也是机器学习中常用的一种降维算法,与 PCA 相比, LDA 是属于supervised 的一种降维算法.PCA考虑的 ...
- 【cs229-Lecture5】生成学习算法:1)高斯判别分析(GDA);2)朴素贝叶斯(NB)
参考: cs229讲义 机器学习(一):生成学习算法Generative Learning algorithms:http://www.cnblogs.com/zjgtan/archive/2013/ ...
- 线性判别分析(Linear Discriminant Analysis, LDA)算法分析
原文来自:http://blog.csdn.net/xiazhaoqiang/article/details/6585537 LDA算法入门 一. LDA算法概述: 线性判别式分析(Lin ...
- 线性判别分析(Linear Discriminant Analysis,LDA)
一.LDA的基本思想 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD) ...
随机推荐
- linux screen 命令 :离线运行程序
screen工具是linux下虚拟终端的一个常用工具.在 发现这个工具之前,笔者经常在远程ssh中运行需要长时间处理数据的命令,比如远程编译安装软件,如果在编译的过程中网络断开,那这个编译进程就会停止 ...
- 【BZOJ2000】[HNOI2000]取石头游戏(贪心,博弈论)
[BZOJ2000][HNOI2000]取石头游戏(贪心,博弈论) 题面 BZOJ 洛谷 题解 这题好神仙啊,窝不会QaQ. 假装一下只有三个元素\(a_{i-1},a_i,a_{i+1}\),并且满 ...
- sql server 小技巧(1) 导入csv数据到sql server
1. 右击 DataBaseName,选择 Tasks->Import Data 2. 选择数据源: Flat File Source , 选择一个csv文件 Advance: 选择所有的列,改 ...
- scrapy 中间件
一.中间件的分类 scrapy的中间件理论上有三种(Schduler Middleware,Spider Middleware,Downloader Middleware),在应用上一般有以下两种 1 ...
- 深入理解JVM结构
JVM结构探究---- 1.JVM结构示意图 2.JVM运行时数据区 1)程序计数器(Program Counter Register) 程序计数器是用于存储每个线程下一步将执行的JVM指令,如该方法 ...
- bzoj2870最长道路tree——边分治
简化版描述: 给定一棵N个点的树,求树上一条链使得链的长度乘链上所有点中的最小权值所得的积最大. 其中链长度定义为链上点的个数. 有几个不同的做法: 1.sort+并查集+树的直径.边从大到小加入 ...
- 【洛谷P2261】余数求和
题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...
- 常用服务器构建 ftp
ftp服务器1.安装vsftpd服务器sudo apt-get install vsftpd2.配置vsftpd.conf文件sudo vi /etc/vsftpd.conf添加下面设置anonymo ...
- Dubbo 服务治理-mock实例
转: Dubbo 服务治理-mock实例 老生住长亭 2017.02.28 10:56* 字数 514 阅读 2552评论 10喜欢 2 Dubbo的mock自己折腾的实例,配置信息有点简陋,有点粗鄙 ...
- springSession框架来实现sso单点登陆
介绍一下springsession这个框架,其实springsession框架默认的是使用redis来实现单点登陆的,但是不支持redis集群,这个框架的特点是无侵入的实现单点登陆,就是说我们之前获取 ...