[POI2015]Myjnie
[POI2015]Myjnie
题目大意:
有\(n(n\le50)\)家洗车店从左往右排成一排,每家店都有一个正整数价格\(d_i\)。
有\(m(m\le4000)\)个人要来消费,第\(i\)个人会选择\(a_i\sim b_i\)这些店中最便宜的一个进行一次消费。但是如果这个最便宜的价格大于\(c_i\),那么这个人就不洗车了。
请给每家店指定一个价格,使得所有人花的钱的总和最大。
思路:
将\(c\)离散化后进行区间DP。
用\(f_{i,j,k}\)表示区间\([i,j]\)最小值为\(k\)的最大收益,\(g_{i,j,k}\)表示\(f\)的后缀\(\max\),\(h_{i,j}\)表示当前区间内经过\(i\)点,费用限制\(\ge j\)的人数。
设\(k\)对应的离散化前原数为\(t_k\),枚举\(k\)出现的位置\(x\),转移方程为:
\]
由于要构造一种方案,在DP时记录转移即可。
时间复杂度\(\mathcal O(n^3m)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=51,M=4001;
int a[M],b[M],c[M],d[N],tmp[M],f[N][N][M],g[N][N][M],p[N][N][M],last[N][N][M],h[N][M];
void dfs(const int &i,const int &j,const int &k) {
const int &p=::p[i][j][k];
if(i!=p) dfs(i,p-1,last[i][j][k]);
if(j!=p) dfs(p+1,j,last[i][j][k]);
d[p]=tmp[last[i][j][k]];
}
int main() {
const int n=getint(),m=getint();
for(register int i=1;i<=m;i++) {
a[i]=getint();
b[i]=getint();
tmp[++tmp[0]]=c[i]=getint();
}
std::sort(&tmp[1],&tmp[tmp[0]]+1);
tmp[0]=std::unique(&tmp[1],&tmp[tmp[0]]+1)-&tmp[1];
for(register int i=1;i<=m;i++) {
c[i]=std::lower_bound(&tmp[1],&tmp[tmp[0]]+1,c[i])-tmp;
}
for(register int i=n;i>=1;i--) {
for(register int j=i;j<=n;j++) {
for(register int k=i;k<=j;k++) {
std::fill(&h[k][1],&h[k][tmp[0]]+1,0);
}
for(register int k=1;k<=m;k++) {
if(i<=a[k]&&b[k]<=j) {
for(register int i=a[k];i<=b[k];i++) h[i][c[k]]++;
}
}
for(register int k=i;k<=j;k++) {
for(register int i=tmp[0];i>1;i--) h[k][i-1]+=h[k][i];
}
for(register int k=tmp[0];k>=1;k--) {
for(register int x=i;x<=j;x++) {
const int t=g[i][x-1][k]+g[x+1][j][k]+h[x][k]*tmp[k];
if(t>=f[i][j][k]) {
f[i][j][k]=t;
p[i][j][k]=x;
}
}
g[i][j][k]=f[i][j][k];
last[i][j][k]=k;
if(k!=tmp[0]&&g[i][j][k+1]>g[i][j][k]) {
g[i][j][k]=g[i][j][k+1];
p[i][j][k]=p[i][j][k+1];
last[i][j][k]=last[i][j][k+1];
}
}
}
}
dfs(1,n,1);
printf("%d\n",g[1][n][1]);
for(register int i=1;i<=n;i++) {
printf("%d%c",d[i]," \n"[i==n]);
}
return 0;
}
[POI2015]Myjnie的更多相关文章
- 【BZOJ 4380】4380: [POI2015]Myjnie (区间DP)
4380: [POI2015]Myjnie Description 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i].有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗 ...
- 【BZOJ4380】[POI2015]Myjnie 区间DP
[BZOJ4380][POI2015]Myjnie Description 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i].有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[ ...
- bzoj4380[POI2015]Myjnie dp
[POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 368 Solved: 185[S ...
- bzoj [POI2015]Myjnie
[POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special Judge Description 有n家洗车店从左往右排成一排, ...
- BZOJ4380 : [POI2015]Myjnie
将$c$离散化,设: $f[i][j][k]$为区间$[i,j]$最小值为$k$的最大收益. $g[i][j][k]$为$\max(g[i][j][k..m])$. $h[i][j]$为对于当前DP区 ...
- BZOJ 4380 [POI2015]Myjnie | DP
链接 BZOJ 4380 题面 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]. 有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个 ...
- 【BZOJ】4380: [POI2015]Myjnie
题解 区间dp,先离散化所有价值 \(f[i][j][k]\)表示\([i,j]\)区间里最小值为\(k\)的价值最大是多少 只考虑\(i <= a <= b <= j\)的区间,枚 ...
- 2018.10.22 bzoj4380: [POI2015]Myjnie(区间dp)
传送门 区间dp好题. f[i][j][k]f[i][j][k]f[i][j][k]表示区间[i,j][i,j][i,j]最小值为kkk时的最大贡献. 然后可以枚举端点转移. 当时口胡到这儿就不会了. ...
- @bzoj - 4380@ [POI2015] Myjnie
目录 @description@ @solution@ @accepted code@ @details@ @description@ 有 n 家洗车店从左往右排成一排,每家店都有一个正整数价格 p[ ...
随机推荐
- Java并发编程(2) AbstractQueuedSynchronizer的内部结构
一 前言 虽然已经有很多前辈已经分析过AbstractQueuedSynchronizer(简称AQS,也叫队列同步器)类,但是感觉那些点始终是别人的,看一遍甚至几遍终不会印象深刻.所以还是记录下来印 ...
- 用Nginx分流绕开Github反爬机制
用Nginx分流绕开Github反爬机制 0x00 前言 如果哪天有hacker进入到了公司内网为所欲为,你一定激动地以为这是一次蓄谋已久的APT,事实上,还有可能只是某位粗线条的员工把VPN信息泄露 ...
- thinkphp报错Call to undefined method app\index\controller\Index::fetch()
因为要写一个系统,所以又重新下载了thinkphp,然后安装了一下.回忆起这个问题很容易让新手朋友费解.会出现如下报错:Call to undefined method app\index\contr ...
- python3之pymysql模块
1.python3 MySQL数据库链接模块 PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库,Python2中则使用mysqldb. PyMySQL 遵循 Pyt ...
- Linux下如何在进程中获取虚拟地址对应的物理地址【转】
转自:http://blog.csdn.net/kongkongkkk/article/details/74366200 如果让你编写一个程序,来获取虚拟地址对应的物理地址..你会试着操作MMU吗.. ...
- AndroidManifest.xml权限设置
访问登记属性 android.permission.ACCESS_CHECKIN_PROPERTIES ,读取或写入登记check-in数据库属性表的权限 获取错略位置 android.permi ...
- Tomcat安装与优化
Tomcat安装与优化 1.安装jdk环境 最新的JDK下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downlo ...
- C# 去除文件非法字符名
string resultFileName = MD5Encrypt(NavigateUrl).Replace("=",string.Empty) + ".txt&quo ...
- Java关于网络编程回顾
一.Java网络编程三要素:1.IP地址:是要确定发送的地址,IP地址一般分为5类. 2.端口:要确定发送的程序是哪一个,端口的范围是0--65535,其中0-1024是系统使用或保留端口 3.协议: ...
- vue总结05 过渡--状态过渡
状态过渡 Vue 的过渡系统提供了非常多简单的方法设置进入.离开和列表的动效.那么对于数据元素本身的动效呢,比如: 数字和运算 颜色的显示 SVG 节点的位置 元素的大小和其他的属性 所有的原始数字都 ...