Ford-Fulkerson 最大流算法
流网络(Flow Networks)指的是一个有向图 G = (V, E),其中每条边 (u, v) ∈ E 均有一非负容量 c(u, v) ≥ 0。如果 (u, v) ∉ E 则可以规定 c(u, v) = 0。流网络中有两个特殊的顶点:源点 s (source)和汇点 t(sink)。为方便起见,假定每个顶点均处于从源点到汇点的某条路径上,就是说,对每个顶点 v ∈ E,存在一条路径 s --> v --> t。因此,图 G 为连通图,且 |E| ≥ |V| - 1。
下图展示了一个流网络实例。

设 G = (V, E) 是一个流网络,其容量函数为 c。设 s 为网络的源点,t 为汇点。G 的流的一个实值函数 f:V×V → R,且满足下列三个性质:
- 容量限制(Capacity Constraint):对所有顶点对 u, v ∈ V,要求 f(u, v) ≤ c(u, v)。
- 反对称性(Skew Symmetry):对所有顶点对 u, v ∈ V,要求 f(u, v) = - f(v, u)。
- 流守恒性(Flow Conservation):对所有顶点对 u ∈ V - {s, t},要求 Σv∈Vf(u, v) = 0。
f(u, v) 称为从顶点 u 到顶点 v 的流,流的值定义为:|f| =Σv∈Vf(s, v),即从源点 s 出发的总流。
最大流问题(Maximum-flow problem)中,给出源点 s 和汇点 t 的流网络 G,希望找出从 s 到 t 的最大值流。
满足流网络的性质的实际上定义了问题的限制:
- 经过边的流不能超过边的容量;
- 除了源点 s 和汇点 t,对于其它所有顶点,流入量与流出量要相等;
上面的图中描述的流网络可简化为下图,其中源点 s = 0,汇点 t = 5。

上图的最大流为 23,流向如下图所示。

Ford-Fulkerson 算法是一种解决最大流的方法,其依赖于三种重要思想:
- 残留网络(Residual networks)
- 增广路径(Augmenting paths)
- 割(Cut)
这些思想是最大流最小割定理的精髓,该定理用流网络的割来描述最大流的值。
最大流最小割定理
如果 f 是具有源点 s 和汇点 t 的流网络 G = (V, E) 中的一个流,则下列条件是等价的:
- f 是 G 的一个最大流。
- 残留网络 Gf 不包含增广路径。
- 对 G 的某个割 (S, T),有 |f| = c(S, T)。
Ford-Fulkerson 算法是一种迭代方法。开始时,对所有 u, v ∈ V 有 f(u, v) = 0,即初始状态时流的值为 0。在每次迭代中,可通过寻找一条增广路径来增加流值。增广路径可以看做是从源点 s 到汇点 t 之间的一条路径,沿该路径可以压入更多的流,从而增加流的值。反复进行这一过程,直至增广路径都被找出为止。最大流最小割定理将说明在算法终止时,这一过程可产生出最大流。
FORD-FULKERSON-METHOD(G, s, t)
initialize flow f to
while there exists an augmenting path p
do augment flow f along p
return f
上述伪码实现的时间复杂度为 O(max_flow * E)。
C# 代码实现如下:
using System;
using System.Collections.Generic;
using System.Linq; namespace GraphAlgorithmTesting
{
class Program
{
static void Main(string[] args)
{
Graph g = new Graph();
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , ); Console.WriteLine();
Console.WriteLine("Graph Vertex Count : {0}", g.VertexCount);
Console.WriteLine("Graph Edge Count : {0}", g.EdgeCount);
Console.WriteLine(); int maxFlow = g.FordFulkerson(, );
Console.WriteLine("The Max Flow is : {0}", maxFlow); Console.ReadKey();
} class Edge
{
public Edge(int begin, int end, int weight)
{
this.Begin = begin;
this.End = end;
this.Weight = weight;
} public int Begin { get; private set; }
public int End { get; private set; }
public int Weight { get; private set; } public override string ToString()
{
return string.Format(
"Begin[{0}], End[{1}], Weight[{2}]",
Begin, End, Weight);
}
} class Graph
{
private Dictionary<int, List<Edge>> _adjacentEdges
= new Dictionary<int, List<Edge>>(); public Graph(int vertexCount)
{
this.VertexCount = vertexCount;
} public int VertexCount { get; private set; } public IEnumerable<int> Vertices
{
get
{
return _adjacentEdges.Keys;
}
} public IEnumerable<Edge> Edges
{
get
{
return _adjacentEdges.Values.SelectMany(e => e);
}
} public int EdgeCount
{
get
{
return this.Edges.Count();
}
} public void AddEdge(int begin, int end, int weight)
{
if (!_adjacentEdges.ContainsKey(begin))
{
var edges = new List<Edge>();
_adjacentEdges.Add(begin, edges);
} _adjacentEdges[begin].Add(new Edge(begin, end, weight));
} public int FordFulkerson(int s, int t)
{
int u, v; // Create a residual graph and fill the residual graph with
// given capacities in the original graph as residual capacities
// in residual graph
int[,] residual = new int[VertexCount, VertexCount]; // Residual graph where rGraph[i,j] indicates
// residual capacity of edge from i to j (if there
// is an edge. If rGraph[i,j] is 0, then there is not)
for (u = ; u < VertexCount; u++)
for (v = ; v < VertexCount; v++)
residual[u, v] = ;
foreach (var edge in this.Edges)
{
residual[edge.Begin, edge.End] = edge.Weight;
} // This array is filled by BFS and to store path
int[] parent = new int[VertexCount]; // There is no flow initially
int maxFlow = ; // Augment the flow while there is path from source to sink
while (BFS(residual, s, t, parent))
{
// Find minimum residual capacity of the edhes along the
// path filled by BFS. Or we can say find the maximum flow
// through the path found.
int pathFlow = int.MaxValue;
for (v = t; v != s; v = parent[v])
{
u = parent[v];
pathFlow = pathFlow < residual[u, v]
? pathFlow : residual[u, v];
} // update residual capacities of the edges and reverse edges
// along the path
for (v = t; v != s; v = parent[v])
{
u = parent[v];
residual[u, v] -= pathFlow;
residual[v, u] += pathFlow;
} // Add path flow to overall flow
maxFlow += pathFlow;
} // Return the overall flow
return maxFlow;
} // Returns true if there is a path from source 's' to sink 't' in
// residual graph. Also fills parent[] to store the path.
private bool BFS(int[,] residual, int s, int t, int[] parent)
{
bool[] visited = new bool[VertexCount];
for (int i = ; i < visited.Length; i++)
{
visited[i] = false;
} Queue<int> q = new Queue<int>(); visited[s] = true;
q.Enqueue(s);
parent[s] = -; // standard BFS loop
while (q.Count > )
{
int u = q.Dequeue(); for (int v = ; v < VertexCount; v++)
{
if (!visited[v]
&& residual[u, v] > )
{
q.Enqueue(v);
visited[v] = true;
parent[v] = u;
}
}
} // If we reached sink in BFS starting from source,
// then return true, else false
return visited[t] == true;
}
}
}
}
运行结果如下:

参考资料
- 广度优先搜索
- 深度优先搜索
- Breadth First Traversal for a Graph
- Depth First Traversal for a Graph
- Dijkstra 单源最短路径算法
- Bellman-Ford 单源最短路径算法
- Bellman–Ford algorithm
- Introduction To Algorithm
- Floyd-Warshall's algorithm
- Bellman-Ford algorithm for single-source shortest paths
- Dynamic Programming | Set 23 (Bellman–Ford Algorithm)
- Dynamic Programming | Set 16 (Floyd Warshall Algorithm)
- Johnson’s algorithm for All-pairs shortest paths
- Floyd-Warshall's algorithm
- 最短路径算法--Dijkstra算法,Bellmanford算法,Floyd算法,Johnson算法
- QuickGraph, Graph Data Structures And Algorithms for .NET
- CHAPTER 26: ALL-PAIRS SHORTEST PATHS
本篇文章《Ford-Fulkerson 最大流算法》由 Dennis Gao 发表自博客园,未经作者本人同意禁止任何形式的转载,任何自动或人为的爬虫转载行为均为耍流氓。
Ford-Fulkerson 最大流算法的更多相关文章
- ACM/ICPC 之 网络流入门-Ford Fulkerson与SAP算法(POJ1149-POJ1273)
第一题:按顾客访问猪圈的顺序依次构图(顾客为结点),汇点->第一个顾客->第二个顾客->...->汇点 //第一道网络流 //Ford-Fulkerson //Time:47M ...
- 算法9-5:最大流算法的Java代码
残留网络 在介绍最大流算法之前先介绍一下什么是残留网络.残余网络的概念有点类似于集合中的补集概念. 下图是残余网络的样例. 上面的网络是原始网络.以下的网络是计算出的残留网络.残留网络的作用就是用来描 ...
- 海量数据挖掘MMDS week3:流算法Stream Algorithms
http://blog.csdn.net/pipisorry/article/details/49183379 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 基于.net的分布式系统限流组件(限流算法:令牌算法和漏斗算法)
转载链接:https://www.cnblogs.com/vveiliang/p/9049393.html 1.令牌桶算法 令牌桶算法是比较常见的限流算法之一,大概描述如下: 1).所有的请求在处理之 ...
- 最大流算法-ISAP
引入 最大流算法分为两类,一种是增广路算法,一种是预留推进算法.增广路算法包括时间复杂度\(O(nm^2)\)的EK算法,上界为\(O(n^2m)\)的Dinic算法,以及一些其他的算法.EK算法直接 ...
- 常用限流算法与Guava RateLimiter源码解析
在分布式系统中,应对高并发访问时,缓存.限流.降级是保护系统正常运行的常用方法.当请求量突发暴涨时,如果不加以限制访问,则可能导致整个系统崩溃,服务不可用.同时有一些业务场景,比如短信验证码,或者其它 ...
- Cable TV Network 顶点连通度 (最大流算法)
Cable TV Network 题目抽象:给出含有n个点顶点的无向图,给出m条边.求定点联通度 K 算法:将每个顶点v拆成 v' v'' ,v'-->v''的容量为1. ...
- 最大流算法(Edmons-Karp + Dinic 比较) + Ford-Fulkson 简要证明
Ford-Fulkson用EK实现:483ms #include <cstdio> #include <cstring> #define min(x,y) (x>y?y: ...
- 最大流算法----(SAP 和 EK)
EK算法的核心 反复寻找源点 s 到汇点 t 之间的增广路径,若有,找出增广路径上每一段的最小值delta,若无,则结束. 寻找增广路径时用BFS来找,并且更新残留网的值. 找到delta后,则使最大 ...
随机推荐
- a标签点击跳转失效--IE6、7的奇葩bug
一般运用a标签包含img去实现点击图片跳转的功能,这是前端经常要用到的东西. 今天遇到个神奇的bug:如果在img上再包裹一层div,而且div设置了width和height,则图片区域点击时,无任何 ...
- nodejs进阶(3)—路由处理
1. url.parse(url)解析 该方法将一个URL字符串转换成对象并返回. url.parse(urlStr, [parseQueryString], [slashesDenoteHost]) ...
- 恋爱虽易,相处不易:当EntityFramework爱上AutoMapper
剧情开始 为何相爱? 相处的问题? 女人的伟大? 剧情收尾? 有时候相识即是一种缘分,相爱也不需要太多的理由,一个眼神足矣,当EntityFramework遇上AutoMapper,就是如此,恋爱虽易 ...
- 如何进行python性能分析?
在分析python代码性能瓶颈,但又不想修改源代码的时候,ipython shell以及第三方库提供了很多扩展工具,可以不用在代码里面加上统计性能的装饰器,也能很方便直观的分析代码性能.下面以我自己实 ...
- 微框架spark--api开发利器
spark简介 Spark(注意不要同Apache Spark混淆)的设计初衷是,可以简单容易地创建REST API或Web应用程序.它是一个灵活.简洁的框架,大小只有1MB.Spark允许用户自己选 ...
- SDWebImage源码解读 之 SDWebImageCompat
第三篇 前言 本篇主要解读SDWebImage的配置文件.正如compat的定义,该配置文件主要是兼容Apple的其他设备.也许我们真实的开发平台只有一个,但考虑各个平台的兼容性,对于框架有着很重要的 ...
- 《LoadRunner12七天速成宝典》签售会2016-12-17北京
报名地址: http://www.after615.com/actives/s?id=3141&time=1480042829608&sign=9ac8e25e9ab3cf57f613 ...
- android 事件分发机制详解(OnTouchListener,OnClick)
昨天做东西做到触摸事件冲突,以前也经常碰到事件冲突,想到要研究一下Android的事件冲突机制,于是从昨天开始到今天整整一天时间都要了解这方面的知识,这才懂了安卓的触摸和点击事件的机制.探究如下: 首 ...
- 【SAP业务模式】之ICS(一):业务详述
PS:本专题系列讲述如何在SAP系统中实现ICS的业务模式,本系列博文系原创,如要转载引用,请保持原文一致并注明出处! SAP系统自身功能非常强大,支持多种业务模式,通过前台后台的配置就可以实现多种效 ...
- 和我一起看API(一)你所不知道的LinearLayout补充
楼主英语水平差,翻译的不好的话请多多指正,嘿嘿... A Layout that arranges its children in a single column or a single row. T ...