题目链接

题目

题目描述

在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度)。坐标为0的点表示桥的起点,坐标为L的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是S到T之间的任意正整数(包括S,T)。当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥。

题目给出独木桥的长度L,青蛙跳跃的距离范围S,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。

输入描述

第一行有一个正整数 \(L(1\leq L\leq 10^9)\),表示独木桥的长度。

第二行有三个正整数S,T,M,分别表示青蛙一次跳跃的最小距离,最大距离,及桥上石子的个数,其中1<=S<=T<=10,1<=M<=100。

第三行有M个不同的正整数分别表示这M个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。

所有相邻的整数之间用一个空格隔开。

输出描述

只包括一个整数,表示青蛙过河最少需要踩到的石子数。

示例1

输入

10
2 3 5
2 3 5 6 7

输出

2

备注

对于30%的数据,L<=10000;对于全部的数据,\(L\leq 10^9\) 。

题解

知识点:线性dp,数论。

显然线性dp,但发现数据范围很大,数组装不下。思路不可能是别的,那看一下数据上有没有能动手脚的地方。

注意到每次跳的格数是 \([s,t]\) ,而两者大小都小于等于 \(10\) ,并且石头数小于等于 \(100\) ,可以看出实际石头间隔区间可能很大,有很多空间被浪费。现在有两个方案:离散化,数据可优化。前者不可行,因为dp需要中间这些空位不能离散掉,考虑后者。

注意到有不定方程 \(ax + by = d\),其中 \(d\) 为总跳跃长度,\(a,b \in [s,t]\) ,\(x,y\) 为跳跃 \(a,b\) 的次数,只需要 \(gcd(a,b)|d\) 即可有解。而这道题的跳跃区间是 \([s,t]\) ,因此只要一个区间内有互质的两个数 \(a,b\) 即可保证任意 \(d\) 都有解。但还有一个额外条件 \(x,y\geq 0\) ,因此实际上不是所有 \(d > 0\) 都能被凑出来,但可以保证 \(d> ab\) 时一定能被合法的凑出来。最后可以枚举证明,\([1,10]\) 任意两个相邻的数都是互质的,我们可以找区间里最小的两个数作为 \(a,b\) 。因此当 \(s \neq t\) 时 ,总能使得任意 $d> st $ 被凑出来。

上面的结论告诉我们,实际上 \(d> st\) 的长度都可以被踩到,因此之后这些的位置其实都等价了没必要保留了,只需要保留 \(d \leq st\) 的即可 ,因此当两个石头跨度 \(> st\) 时,手动修改为 \(st\) 即可,其余的间距保留不变,这样就能dp了。

特判一下 \(s = t\) 的情况即可。

时间复杂度 \(O(m\log m + t(L+t))\)

空间复杂度 \(O(m + L)\)

代码

#include <bits/stdc++.h>

using namespace std;

int a[107], b[107], dp[10107];
bool vis[10107]; int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int L;
cin >> L;
int s, t, m;
cin >> s >> t >> m;
for (int i = 1;i <= m;i++) cin >> a[i];
if (s == t) {
int ans = 0;
for (int i = 1;i <= m;i++)
if (a[i] % s == 0) ans++;
cout << ans << '\n';
return 0;
}
sort(a + 1, a + m + 1);
int eps = s * t;
for (int i = 1;i <= m;i++) {
b[i] = b[i - 1] + min(a[i] - a[i - 1], eps);///>=st的值一定都能取到,不如缩短成100
vis[b[i]] = 1;
}
L = b[m] + min(L - a[m], eps);
for (int i = 1;i < L + t;i++) {///可以越过L
dp[i] = 0x3f3f3f3f;
for (int j = s;j <= t;j++)
if (i >= j) dp[i] = min(dp[i], dp[i - j] + vis[i]);
}
int ans = 0x3f3f3f3f;
for (int i = L;i < L + t;i++) ans = min(ans, dp[i]);
cout << ans << '\n';
return 0;
}

NC16655 [NOIP2005]过河的更多相关文章

  1. [codevs1105][COJ0183][NOIP2005]过河

    [codevs1105][COJ0183][NOIP2005]过河 试题描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青 ...

  2. NOIP2005过河[DP 状态压缩]

    题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数 ...

  3. NOIP2005 过河

    过河 (river.pas/c/cpp) [问题描述] 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正 ...

  4. [NOIP2005] 过河【Dp,思维题,缩点】

    Online Judge:Luogu P1052 Label:Dp,思维题,缩点,数学 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子 ...

  5. [vijos1002][NOIP2005]过河

    Description 给定一条数轴,起点为0,数轴的某些整数点上有石子.每次可以移动的区间为[S,T].求当到达或超过L时,最少踩到的石子数. Input 输入的第一行有一个正整数L(1 <= ...

  6. NOIP2005过河(青蛙过河)

    题目传送门 这道题主要是因为L长度最大可以为1e9 而石子却最多只有100个 这样就浪费了很多时间空间 所以我们压缩一波路径就可以了 剩余的就是枚举每个点以及i-y到i-x的dp了 这里要说一句为什么 ...

  7. NOIp2005 过河【dp+离散化】By cellur925

    题目传送门 $30pts$ 状态和转移都比较好想:设$f[i]$表示跳到$i$位置,踩到的最小石子数.转移方程也很明了,为$f[i]$=$min${$f[i-j]$),,这个位置有石子时答案再加1,$ ...

  8. [题解+总结]NOIP动态规划大合集

    1.前言 NOIP2003-2014动态规划题目大合集,有简单的也有难的(对于我这种动态规划盲当然存在难的),今天就把这些东西归纳一下,做一个比较全面的总结,方便对动态规划有一个更深的理解. 2.NO ...

  9. 【游记】NOIP 2017

    时间:2017.11.11~2017.11.12 地点:广东省广州市第六中学 Day1 T1:看到题目,心想这种题目也能放在T1? 这个结论我之前遇到过至少3次,自己也简单证明过.初见是NOIP200 ...

  10. OI 刷题记录——每周更新

    每周日更新 2016.05.29 UVa中国麻将(Chinese Mahjong,Uva 11210) UVa新汉诺塔问题(A Different Task,Uva 10795) NOIP2012同余 ...

随机推荐

  1. 解决 idea maven plugins 报红波浪线

    导入新项目到 idea 的时候,由于依赖的环境以及项目中 maven 编译所依赖的pom的版本不同,很多时候导入到idea的时候 maven Plugins 会出现报红的情况,这是由于maven仓库中 ...

  2. 【转】嵌入式C语言代码优化方案

    来源:嵌入式C语言代码优化方案(深度好文,建议花时间研读并收藏) (qq.com) 1.选择合适的算法和数据结构 选择一种合适的数据结构很重要,如果在一堆随机存放的数中使用了大量的插入和删除指令,那使 ...

  3. SpringBoot01:HelloWorld!

    回顾Spring Spring是一个开源框架,2003年兴起的一个轻量级的Java开发框架. Spring是为了解决企业级应用开发的复杂性而创建的,简化开发. Spring是怎样简化Java开发的呢? ...

  4. MySQL调优学习-快速获取占用CPU较高的SQL语句

    MySQL调优学习-快速获取占用CPU较高的SQL语句 背景 早上突然发现一个MySQL数据库的CPU使用率居高 因为是一个混布的环境上面还有一个redis 怕影响业务就上去像查看一下具体是何种原因导 ...

  5. [转帖]tcp、http和socket的区别

    https://www.jianshu.com/p/88d69454bdde 一:tcp协议 tcp协议属于传输层协议(UDP也属于传输层协议,但是UDP协议是无状态的).建立一个TCP连接需要三次握 ...

  6. [转帖]KingbaseES 服务器运行参数分类

    https://www.cnblogs.com/kingbase/p/16969149.html Kingbase 服务器运行参数分类 说明: KingbaseES 数据库中,服务器运行参数分为多种类 ...

  7. [转帖]gooyfs 的编译 github

    https://github.com/kahing/goofys/issues/527 @maobaolong @PengleiShi I had the same issue as you guys ...

  8. [转帖]HTTP 框架 Hertz 实践入门:性能测试指南

    https://maimai.cn/article/detail?fid=1767401397&efid=R2_kM5y-yEUDCK88FZWrGA 干货不迷路2021 年 9 月 8 日, ...

  9. [转帖]MIPS和ARM授权差异引起的龙芯路线变迁

    https://zhuanlan.zhihu.com/p/99807721 一.MIPS和ARM授权的异同 MIPS授权和ARM授权都分为处理器核授权(Core License)和架构授权(Archi ...

  10. [转帖]用实力诠释细节!“Java性能调优六大工具”之JDK命令行工具

    https://www.zhihu.com/people/javajia-gou-ji-zhu-44/posts   JDK命令行工具 在JDK的开发包中,除了大家熟知的java.exe和javac. ...