这个题bzoj上没有图,luogu上样例有问题。。。其实这个题代码不难,但是思考起来还是有一定难度的,其实这些题的重点都在于思考。我就不写了,洛谷上唯一的题解写的挺好,大家可以看一看。

题干:

在dos系统诞生以前,美国曾研究出一种类似的操作系统,名为Tinux系统。但由于硬件设施的制约,Tinux系统有许多的缺点。下面就对Tinux系统作一个简单的介绍:

Tinux系统是Tiger博士为美国军方研制开发的一种操作系统,该系统对文件的存储方式类似于dos系统,像一棵树一样,每一个叶子节点表示一个文件,每一个非叶子节点表示一个目录。其中定义i级子目录表示从根目录开始访问,一直访问到该子目录(不包括该子目录)需要访问的目录的个数为i的目录,所以根目录下的目录为一级子目录,其他的目录以此类推。但是在同一子目录下,受到硬件的制约Tinux系统最多只能够存储k个文件或子目录,也就是说这棵树里面的每一个非叶子节点最多只有k个子节点。这样就导致在文件数量较多的情况下,访问存储在该系统当中的文件A,往往要先访问一系列的子目录,我们称这些子目录为文件A的上级目录。例如下面这一个例子:

Root  A1

 A2

 A3

 A4

 A4A1

 A4A2

 A4A2A1

 A4A2A2

 A4A3

当我们要访问文件A4A2A1时就必须先访问它的上级目录:一级子目录A4和二级子目录A4A2。

Tinux系统在存储文件时,给每一个子目录都分配了k个指针,分别指向存放在该目录下的每一个文件和每一个目录,因此对文件的访问实质上就是对指针的访问。但是由于硬件原因,这k个指针不尽相同,因此访问它们的时间也不同,访问第i个指针所耗费的时间为 。但是对于两个不同的子目录(不管它们各自属于哪一级目录)而言它们各自所拥有的k个指针是相同的。

Tinux系统最大的缺点是访问一个目录时,必须把该目录下所有的文件读入到内存当中来,这些文件包括在其各级子目录当中的文件,例如上面那一个例子,访问A4那一个目录,就必须把A4A1,A4A2A1,A4A2A2,A4A3这四个文件都读入到内存当中来,访问一个目录所需要的时间为 (x表示该目录及其各级子目录下文件的个数, 表示指向该目录的指针的访问时间)。因此根据上面介绍的访问方法,单独访问一个文件所需要的总时间为访问其所有上级目录(不包括根目录)所需要的时间与访问指向该文件的指针所需要的时间的和,例如上面那一个例子,访问文件A4A2A1需要的时间=访问目录A4的时间+访问目录A4A2的时间+访问指向文件A4A2A1的指针需要的时间。

现在,tiger博士准备将n个文件存储到一个空的Tinux系统当中,希望你帮助他设计一个程序找到一种最优的存储方法,使得单独访问这n个文件所需要的时间总和最小。

输入输出格式

输入格式:

输入由文件”system.in”读入。

文件的第一行为两个正整数 , ,接下来的k行每行有一个正整数 。

输出格式:

输出到文件”system.out”,输出文件仅有一个正整数,表示在最优存储方案下,单独访问这n个文件所需要的时间总和。(结果小于2的31次方 )

输入输出样例

输入样例#1:
复制

4 3
3
5
4
4
输出样例#1: 复制

28

说明

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(int i = a;i <= n;i++)
#define lv(i,a,n) for(int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
int f[][];
int n,k,p[];
int MIN(int x,int y)
{
if(!x)
return y;
else
return min(x,y);
}
int dp(int x,int y,int l)
{
if(x == )
{
f[x][y] = p[y];
return f[x][y];
}
if(y == k)
{
f[x][y] = p[y] * x * x + dp(x,,x - );
return f[x][y];
}
int tmp = k - y + ;
if(tmp * l < x)
return INF;
if(f[x][y]) return f[x][y];
tmp = (x - ) / tmp + ;
duke(i,tmp,l)
{
if(i == )
f[x][y] = p[y] + dp(x - ,y + ,x - );
else
f[x][y] = MIN(f[x][y],dp(x - i,y + ,x - i - ) + dp(i,,i - ) + p[y] * i * i);
}
return f[x][y];
}
int main()
{
read(n);read(k);
duke(i,,k)
read(p[i]);
sort(p + ,p + k + );
printf("%d\n",dp(n,,n - ));
return ;
}

B1277 [HNOI2002]Tinux系统 树形dp的更多相关文章

  1. 算法进阶面试题05——树形dp解决步骤、返回最大搜索二叉子树的大小、二叉树最远两节点的距离、晚会最大活跃度、手撕缓存结构LRU

    接着第四课的内容,加入部分第五课的内容,主要介绍树形dp和LRU 第一题: 给定一棵二叉树的头节点head,请返回最大搜索二叉子树的大小 二叉树的套路 统一处理逻辑:假设以每个节点为头的这棵树,他的最 ...

  2. 水库(树形dp)

    水库 (树形dp) R国有n座城市和n-1条长度为1的双向道路,每条双向道路连接两座城市,城市之间均相互连通.现在你需要维护R国的供水系统.你可以在一些城市修建水库,在第i个城市修建水库需要每年c_i ...

  3. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  4. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

  5. 【BZOJ-4726】Sabota? 树形DP

    4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 128  Solved ...

  6. 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)

    题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...

  7. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

  8. BZOJ 2286 消耗战 (虚树+树形DP)

    给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...

  9. POJ2342 树形dp

    原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...

随机推荐

  1. JAVA程序员面试笔试宝典3

    1.什么是线程?它与进程有什么区别?为什么要使用多线程 线程是指程序在执行过程中,能够执行程序代码的一个执行单元.进程是指一段正在执行的程序. 使用多线程可以减少程序的相应时间 与进程相比,线程的创建 ...

  2. JS中的let和var的区别

    最近很多前端的朋友去面试被问到let和var的区别,其实阮一峰老师的ES6中已经很详细介绍了let的用法和var的区别.我简单总结一下,以便各位以后面试中使用. ES6 新增了let命令,用来声明局部 ...

  3. Linux常用命令——压缩与解压缩命令

    常用压缩格式:  .zip   .gz   .bz2   .tar.gz   .tar.bz2 1..zip格式压缩 zip 压缩文件名 源文件 压缩文件 zip -r 压缩文件名 源目录 压缩目录 ...

  4. 如何同步iframe与嵌入内容的高度

    最近频繁的做一些通过iframe在a页面嵌入b页面需求.总结下来,有以下问题需要解决 1.如何同步iframe与嵌入内容的高度 2.将b页面载入到a页面后,如何隐藏掉b页面上的元素,如左导航,顶部导航 ...

  5. UVA - 1623 Enter The Dragon(贪心)

    题目: 思路: 读完题之后有了以下想法: 当遇到下雨的天,就找这个湖泊上一次下雨满了之后又一次不下雨的日期.有就在这个日期下记录被神龙喝干的湖的编号,没有就是不符合题意. 这个想法是对的,但是却被代码 ...

  6. Linux设置history命令显示行数以及时间

    Linux和unix上都提供了history命令,可以查询以前执行的命令历史记录但是,这个记录并不包含时间项目因此只能看到命令,但是不知道什么时间执行的如何让history记录时间呢? 解决方案 注意 ...

  7. Reading Lists

    * Non-academic 1. Slowing Down to the Speed of Life, by Richard Carlson and Joseph Bailey.2. Your Mo ...

  8. naca0012

    naca0012 naca0012 Table of Contents 1. NACA0012 lift and drag from 0-180 1.1. Data– Cl Cd vs. aoa 2. ...

  9. BZOJ 1782 洛谷 2982 [Usaco2010 Feb]slowdown 慢慢游

    [题解] 一头牛走到i,相当于把i点的子树的点权都加1,查询减慢的次数就是查询目的地的点权. 预处理dfs序,某个点的子树的dfs序是连续的一段.差分后用树状数组维护,变成点修区查.或者直接线段树区修 ...

  10. [bzoj2431][HAOI2009][逆序对数列] (dp计数)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...