解决MindSpore-2.4-GPU版本的安装问题
问题背景
虽说在MindSpore-2.3之后的版本中不在正式的发行版中支持GPU硬件后端,但其实在开发分支版本中对GPU后端是有支持的:
但是在安装的过程中可能会遇到一些问题或者报错,这里复现一下我的Ubuntu-20.04环境下的安装过程。
Pip安装
基本的安装流程是这样的,首先使用anaconda创建一个python-3.9的虚拟环境,因为在MindSpore-2.4版本之后不再支持python-3.7:
$ conda create -name mindspore-master python=3.9
然后根据自己的本地环境,执行相应的pip安装指令,例如:
$ python3 -m pip install mindspore-dev -i https://pypi.tuna.tsinghua.edu.cn/simple
如果pip安装期间出现超时的问题,重新执行一遍上述流程即可。安装之后,执行如下指令对安装好的MindSpore进行校验:
$ python -c "import mindspore;mindspore.set_context(device_target='GPU');mindspore.run_check()"
接下来就是处理各种问题的时刻。
version XXX not found
第一个可能出现的问题类型是各种编译工具版本不匹配的问题,例如:
$ python -c "import mindspore;mindspore.set_context(device_target='GPU');mindspore.run_check()"
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/__init__.py", line 18, in <module>
from mindspore.run_check import run_check
File "/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/run_check/__init__.py", line 17, in <module>
from ._check_version import check_version_and_env_config
File "/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/run_check/_check_version.py", line 28, in <module>
from mindspore._c_expression import MSContext, ms_ctx_param
ImportError: /home/dechin/anaconda3/envs/mindspore-master/bin/../lib/libstdc++.so.6: version `CXXABI_1.3.8' not found (required by /home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/_c_expression.cpython-39-x86_64-linux-gnu.so)
这种情况下就是找不到CXXABI_1.3.8这个软件版本。但是如果检查一下系统里面的软件版本:
$ strings /usr/lib/x86_64-linux-gnu/libstdc++.so.6 | grep CXXABI
CXXABI_1.3
CXXABI_1.3.1
CXXABI_1.3.2
CXXABI_1.3.3
CXXABI_1.3.4
CXXABI_1.3.5
CXXABI_1.3.6
CXXABI_1.3.7
CXXABI_1.3.8
CXXABI_1.3.9
CXXABI_1.3.10
CXXABI_1.3.11
CXXABI_1.3.12
CXXABI_TM_1
CXXABI_FLOAT128
我们发现CXXABI_1.3.8是存在的,而之所以有这样的报错,是因为在anaconda创建的这个mindspore虚拟环境中不存在该版本:
$ strings /home/dechin/anaconda3/envs/mindspore-master/lib/libstdc++.so.6 | grep CXXABICXXABI_1.3
CXXABI_1.3.1
CXXABI_1.3.2
CXXABI_1.3.3
CXXABI_1.3.4
CXXABI_1.3.5
CXXABI_1.3.6
CXXABI_1.3.7
CXXABI_TM_1
那么解决的方案是这样的,我们可以直接把mindspore虚拟环境下的这个动态链接库做一个软连接,链接到系统库里面的对应动态链接库上:
$ ln -sf /usr/lib/x86_64-linux-gnu/libstdc++.so.6 /home/dechin/anaconda3/envs/mindspore-master/lib/libstdc++.so.6
再重新运行即可解决当前问题,类似的报错还有:
$ python3 -c "import mindspore;mindspore.set_context(device_target='GPU');mindspore.run_check()"
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/__init__.py", line 18, in <module>
from mindspore.run_check import run_check
File "/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/run_check/__init__.py", line 17, in <module>
from ._check_version import check_version_and_env_config
File "/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/run_check/_check_version.py", line 28, in <module>
from mindspore._c_expression import MSContext, ms_ctx_param
ImportError: /home/dechin/anaconda3/envs/mindspore-master/bin/../lib/libgomp.so.1: version `GOMP_4.0' not found (required by /home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/lib/libmindspore_backend.so)
也可以用相同的方法来处理。
cannot open shared object file
配置好上述环境之后,还有可能出现这样的报错信息:
$ python3 -c "import mindspore;mindspore.set_context(device_target='GPU');mindspore.run_check()"
[WARNING] ME(232647,7ff51906b4c0,python3):2024-11-18-09:54:31.123.673 [mindspore/ccsrc/runtime/hardware/device_context_manager.cc:65] GetNvccRealPath] Invalid environment variable CUDA_HOME [/home], can not find nvcc file [/home/bin/nvcc], please check the CUDA_HOME.
/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/train/metrics/hausdorff_distance.py:20: UserWarning: A NumPy version >=1.22.4 and <2.3.0 is required for this version of SciPy (detected version 1.22.3)
from scipy.ndimage import morphology
[ERROR] ME(232647:140690663584960,MainProcess):2024-11-18-09:54:32.148.524 [mindspore/run_check/_check_version.py:218] libcuda.so (need by mindspore-gpu) is not found. Please confirm that libmindspore_gpu.so is in directory:/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/run_check/../lib/plugin and the correct cuda version has been installed, you can refer to the installation guidelines: https://www.mindspore.cn/install
[ERROR] ME(232647:140690663584960,MainProcess):2024-11-18-09:54:32.148.726 [mindspore/run_check/_check_version.py:218] libcudnn.so (need by mindspore-gpu) is not found. Please confirm that libmindspore_gpu.so is in directory:/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/run_check/../lib/plugin and the correct cuda version has been installed, you can refer to the installation guidelines: https://www.mindspore.cn/install
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/_checkparam.py", line 1367, in wrapper
return func(*args, **kwargs)
File "/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/context.py", line 1861, in set_context
ctx.set_device_target(kwargs['device_target'])
File "/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/context.py", line 495, in set_device_target
self.set_param(ms_ctx_param.device_target, target)
File "/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/context.py", line 187, in set_param
self._context_handle.set_param(param, value)
RuntimeError: Unsupported device target GPU. This process only supports one of the ['CPU']. Please check whether the GPU environment is installed and configured correctly, and check whether current mindspore wheel package was built with "-e GPU". For details, please refer to "Device load error message".
----------------------------------------------------
- Device load error message:
----------------------------------------------------
Load dynamic library: libmindspore_ascend.so.2 failed. libge_runner.so: cannot open shared object file: No such file or directory
Load dynamic library: libmindspore_gpu.so.11.6 failed. libcublas.so.11: cannot open shared object file: No such file or directory
Load dynamic library: libmindspore_gpu.so.11.1 failed. libcublas.so.11: cannot open shared object file: No such file or directory
Load dynamic library: libmindspore_gpu.so.10.1 failed. libcudnn.so.7: cannot open shared object file: No such file or directory
----------------------------------------------------
- C++ Call Stack: (For framework developers)
----------------------------------------------------
mindspore/core/utils/ms_context.cc:287 SetDeviceTargetFromInner
这里的提示是找不到libmindspore_gpu.so.11.6等等动态链接库的地址。那么解决的方案是这样的,我们先去系统里面搜索一下这几个库,如果有存在相应的版本号,我们把所在位置的lib路径配置到LD_LIBRARY_PATH中即可:
$ sudo find / -name libcublas.so*
/home/dechin/anaconda3/envs/mindspore-latest/lib/libcublas.so
/home/dechin/anaconda3/envs/mindspore-latest/lib/libcublas.so.11.3.0.106
/home/dechin/anaconda3/envs/mindspore-latest/lib/libcublas.so.11
/home/dechin/anaconda3/envs/mindsponge/lib/libcublas.so
/home/dechin/anaconda3/envs/mindsponge/lib/libcublas.so.11.3.0.106
/home/dechin/anaconda3/envs/mindsponge/lib/libcublas.so.11
/home/dechin/anaconda3/envs/mindspore-master/lib/libcublas.so
/home/dechin/anaconda3/envs/mindspore-master/lib/libcublas.so.10
/home/dechin/anaconda3/envs/mindspore-master/lib/libcublas.so.10.2.2.89
/usr/lib/x86_64-linux-gnu/libcublas.so.10.2.1.243
/usr/lib/x86_64-linux-gnu/libcublas.so.10.1.0.105
/usr/lib/x86_64-linux-gnu/stubs/libcublas.so
/usr/lib/x86_64-linux-gnu/libcublas.so
/usr/lib/x86_64-linux-gnu/libcublas.so.10
这里我们发现在我们新建的mindspore-master环境中确实没有相应的动态链接库版本,但是反而是旧版的mindspore环境下有相应的这几个动态链接库,于是我的解决方案是把旧版的mindspore环境中的lib配置到环境变量中,即可解决该问题:
$ export LD_LIBRARY_PATH=/home/dechin/anaconda3/envs/mindspore-master/lib:/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/lib:/home/dechin/anaconda3/envs/mindsponge/lib
再次运行测试:
$ python3 -c "import mindspore;mindspore.set_context(device_target='GPU');mindspore.run_check()"
[WARNING] ME(232736,7f562eca06c0,python3):2024-11-18-09:55:58.717.253 [mindspore/ccsrc/runtime/hardware/device_context_manager.cc:65] GetNvccRealPath] Invalid environment variable CUDA_HOME [/home], can not find nvcc file [/home/bin/nvcc], please check the CUDA_HOME.
/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/train/metrics/hausdorff_distance.py:20: UserWarning: A NumPy version >=1.22.4 and <2.3.0 is required for this version of SciPy (detected version 1.22.3)
from scipy.ndimage import morphology
MindSpore version: 2.4.0.dev20241103
The result of multiplication calculation is correct, MindSpore has been installed on platform [GPU] successfully!
可以看到,虽然有一些告警信息,但是最终的运行结果是正确的,需要忽略告警信息的话可以运行:
$ export GLOG_v=4
来配置mindspore日志等级。
这里有个问题是,如果用户的环境中没有安装旧版本的MindSpore。那么我个人认为比较方便的一个方案是,如果系统环境中有其他的libcublas,例如Jax或者Torch等框架环境下也会有这些相关的软件版本,可以把他们的所在路径直接配置到环境变量中即可。如果什么环境都没有,那我的建议是先另建一个虚拟环境,安装一个旧版本的MindSpore,例如mindspore-gpu-2.2,确保成功安装后,再将这个旧版的lib路径配置到新版本下的环境变量中。
Unsupported device target GPU
如果在运行的过程中有出现Unsupported device target GPU的话,并且自动去索引Ascend后端的动态链接库,这种情况发生的原因是没有配置CUDA_HOME这个环境变量。应该是,新版本mindspore底层判断硬件平台的逻辑是通过获取环境变量来的,所以需要手动配置一个CUDA_HOME参数即可,例如:
$ export CUDA_HOME=/home
虽然这样随意配置有可能导致一些告警信息,但并不影响程序的正确运行结果。
总结概要
本文介绍了在Ubuntu-20.04系统下安装最新的MindSpore-2.4-for-GPU版本的方法,以及安装过程中有可能出现的一些问题。虽然在MindSpore的正式版本中已经不再支持GPU硬件后端,但是开发版本目前还是持续在支持的,并且其中包含了2.3和2.4版本的新特性,只是算子层面没有更新和优化。对于GPU后端的MindSpore用户来说,也算是一个好消息。
版权声明
本文首发链接为:https://www.cnblogs.com/dechinphy/p/mindspore-2-4.html
作者ID:DechinPhy
更多原著文章:https://www.cnblogs.com/dechinphy/
请博主喝咖啡:https://www.cnblogs.com/dechinphy/gallery/image/379634.html
参考链接
解决MindSpore-2.4-GPU版本的安装问题的更多相关文章
- 解决Android Studio 3.x版本的安装时没有SDK,运行时出现SDK tools错误
好久没更新了,最近手机上的闹钟APP没一个好用的,所以想自己写个. 那Android开发环境搭起来,注意先装好jdk. 1.安装Android Studio google的Android开发网站已经有 ...
- TensorFlow GPU版本的安装与调试
笔者采用python3.6.7+TensorFlow1.12.0+CUDA10.0+CUDNN7.3.1构建环境 PC端配置为GTX 1050+Intel i7 7700HQ 4核心8线程@2.8GH ...
- Windows7 64bits下安装TensorFlow GPU版本(图文详解)
不多说,直接上干货! Installing TensorFlow on Windows的官网 https://www.tensorflow.org/install/install_windows 首先 ...
- 【MindSpore】Docker上成功使用MindSpore1.0.0的GPU版本
本文是在宿主机Ubuntu16.04上安装Docker(nvidia-docker),并成功进行MindSpore1.0.0的GPU训练: Ubuntu 16.04 Docker Nvidia-doc ...
- 基于Docker安装的MindSpore-1.2 GPU版本
技术背景 在前面一篇博客中,我们介绍过MindSpore-CPU版本的Docker部署以及简单的案例测试,当时官方还不支持GPU版本的Docker容器化部署.经过MindSpore团队的努力,1.2. ...
- 【转】Ubuntu 16.04安装配置TensorFlow GPU版本
之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.0 ...
- 通过Anaconda在Ubuntu16.04上安装 TensorFlow(GPU版本)
一. 安装环境 Ubuntu16.04.3 LST GPU: GeForce GTX1070 Python: 3.5 CUDA Toolkit 8.0 GA1 (Sept 2016) cuDNN v6 ...
- faiss CPU版本+GPU版本安装
faiss安装 faiss是facebook开发的有CPU版本和GPU版本的求密集向量相似性和进行密集向量聚类的库. faiss用c++编写,安装faiss需要在github上下载其c++源码并用ma ...
- Ubuntu16安装GPU版本TensorFlow(个人笔记本电脑)
想着开始学习tf了怎么能不用GPU,网上查了一下发现GeForce GTX确实支持GPU运算,所以就尝试部署了一下,在这里记录一下,避免大家少走弯路. 使用个人笔记本电脑thinkpadE570,内存 ...
- tensorflow 安装GPU版本,个人总结,步骤比较详细【转】
本文转载自:https://blog.csdn.net/gangeqian2/article/details/79358543 手把手教你windows安装tensorflow的教程参考另一篇博文ht ...
随机推荐
- 22.11.13 CCPC 广州站 记录
上来看A(树上DP),直观认为可做,前后拉着队友研究了两个小时,经过lcx,lgy两次hack正确性,最终基本得到答案思路,因为过于复杂和担心正确性问题不敢写. 反思:1.正式比赛中不应该一开始就将大 ...
- 安装nvm,并通过nvm安装nodejs
转载请注明出处: 1.安装nvm 打开终端,然后运行以下命令来下载并安装nvm: curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39 ...
- 【YashanDB知识库】表收集统计信息默认阈值引起SQL执行效率差
[问题分类]性能优化 [关键字]统计信息,阈值,执行计划 [问题描述]表新增87w数据自动收集统计信息任务没有启动导致SQL执行计划变差 [问题原因分析] CUS_REGISTER_READ 数据总量 ...
- powershell 常用插件
1. z 「z」这个 zsh 下常用的跳转工具,当频繁需要进入一个比较深的目录的时候,「z」这个插件会帮我们自动记录这个目录,之后我们只需要执行z [Directory]就可以快速跳转了 PowerS ...
- JavaScript Library – Swiper
前言 官网已经有很好的教程了, 这篇只是记入一些我用过的东西和冷门知识. 参考 官网安装 官网 Demo 安装 yarn add swiper JS import Swiper from 'swipe ...
- Angular 18+ 高级教程 – 国际化 Internationalization i18n
介绍 先讲讲名词. Internationalization 的缩写是 i18n,中文叫国际化. Globalization 是 Internationalization 的同义词,都是指国际化. L ...
- 一款超级给力的弱网测试神器—Qnet(附视频)
一.APP弱网测试背景 App在使用的过程中,难免会遇到不同的弱网络环境,像在公车上.在地铁.地下车库等.在这种情况下,手机常常会出现网络抖动.上行或下行超时,导致APP应用中出现丢包延迟,从而影响用 ...
- k8s 中的 Ingress 简介
〇.前言 前边已经介绍了 k8s 中的相关概念和 Service,本文继续看下什么是 Ingress. Ingress 的重要性不言而喻,它不仅统一了集群对外访问的入口,还提供了高级路由.七层负载均衡 ...
- QT原理与源码分析之QT对象类型QObject源码中的间接的设计思想
这一篇文章介绍QT框架中QT对象类型QObject类型的源代码在设计上的一个比较优秀的设计思想. QObject类型定义 QObject 直接来看QObject的源代码.为了表达更简洁更直观,这里省略 ...
- DenseFusion复现
试了一下原版的pytorch1.0.0,可能时间太长了,许多版本都不被支持,没弄成,另找到一个项目适配pytorch1.7.1 租云服务器.配置RTX3090 pytorch1.7 使用termius ...