[AHOI2013]作业 & Gty的二逼妹子序列 莫队
题解:
题目要求统计一个区间内数值在[a, b]内的数的个数和种数,而这个是可以用树状数组统计出来的,所以可以考虑莫队。
考虑区间[l, r]转移到[l, r + 1],那么对于维护个数的树状数组就直接加即可。
对于维护种数的树状数组,我们额外维护一个数组num,表示数a在区间内出现了多少次,如果是新出现的,那么就加入树状数组。
如果要删除一个数并且这个数在区间内只出现了一次,那么就删除这个数。注意不论什么情况都要实时维护num数组。
然后莫队即可。
Gty的二逼妹子序列是洛谷P4867和作业的某一问是一模一样的,把数组开大点就可以过。
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 100100 int n, m, cnt, block;
int ans1[AC], ans2[AC], s[AC], num[AC], tot[AC]; struct node{
int l, r, a, b, id;
}q[AC]; inline int lowbit(int x)
{
return x & (-x);
} struct kkk{
int a[AC]; void add(int x, int y)
{
for(R i = x; i <= cnt; i += lowbit(i)) a[i] += y;
} int find(int x)
{
int rnt = ;
for(R i = x; i; i -= lowbit(i)) rnt += a[i];
return rnt;
}
}c1, c2; inline int read()
{
int x = ;char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} int half(int x)//查询离散化后的值
{
int l = , r = cnt, mid;
while(l < r)
{
mid = (l + r) >> ;
if(num[mid] == x) return mid;
else if(num[mid] > x) r = mid;
else l = mid + ;
}
return l;
} int half1(int x)//查询最小的大于等于a的值
{
int l = , r = cnt, mid;
if(num[cnt] < x) return cnt + ;
while(l < r)
{
mid = (l + r) >> ;
if(num[mid] >= x) r = mid;
else l = mid + ;
}
return l;
} int half2(int x)//查询最大的小于等于b的值
{
int l = , r = cnt, mid;
if(num[] > x) return ;
while(l < r)
{
mid = (l + r + ) >> ;//强制偏右
if(num[mid] > x) r = mid - ;
else l = mid;
}
return l;
} inline bool cmp(node a, node b)
{
if(a.l / block != b.l / block) return a.l < b.l;
else return a.r < b.r;//分块排序
} void pre()
{
n = read(), m = read(), block = sqrt(n);
for(R i = ; i <= n; i ++) s[i] = num[i] = read();
sort(num + , num + n + );
for(R i = ; i <= n; i ++)
if(num[i] != num[i + ]) num[++cnt] = num[i];
for(R i = ; i <= n; i ++) s[i] = half(s[i]);//在这里离散化,这样后面就不用调用了
for(R i = ; i <= m; i ++)
{
q[i].l = read(), q[i].r = read(), q[i].id = i;
q[i].a = half1(read()), q[i].b = half2(read());
}
sort(q + , q + m + , cmp);
} void add(int x)
{
c1.add(x, );
if(!tot[x]) c2.add(x, );
++ tot[x];
} void del(int x)
{
c1.add(x, -);
-- tot[x];
if(!tot[x]) c2.add(x, -);
} void work()//这里每个点的贡献与区间无关,相对独立,所以不用考虑顺序问题
{
int l, r;
for(R i = q[].l; i <= q[].r; i ++) add(s[i]);
ans1[q[].id] = c1.find(q[].b) - c1.find(q[].a - );
ans2[q[].id] = c2.find(q[].b) - c2.find(q[].a - );
l = q[].l, r = q[].r;
for(R i = ; i <= m; i ++)
{
int ll = q[i].l, rr = q[i].r;
while(ll < l) -- l, add(s[l]);
while(ll > l) del(s[l]), ++ l;
while(rr > r) ++ r, add(s[r]);
while(rr < r) del(s[r]), -- r;
ans1[q[i].id] = c1.find(q[i].b) - c1.find(q[i].a - );
ans2[q[i].id] = c2.find(q[i].b) - c2.find(q[i].a - );
}
for(R i = ; i <= m; i ++) printf("%d %d\n", ans1[i], ans2[i]);
} int main()
{
// freopen("in.in", "r", stdin);
pre();
work();
// fclose(stdin);
return ;
}
[AHOI2013]作业 & Gty的二逼妹子序列 莫队的更多相关文章
- Bzoj 3809: Gty的二逼妹子序列 莫队,分块
3809: Gty的二逼妹子序列 Time Limit: 35 Sec Memory Limit: 28 MBSubmit: 868 Solved: 234[Submit][Status][Dis ...
- BZOJ 3809 Gty的二逼妹子序列 莫队算法+分块
Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...
- [BZOJ3809]Gty的二逼妹子序列[莫队+分块]
题意 给出长度为 \(n\) 的序列,\(m\) 次询问,每次给出 \(l,r,a,b\) ,表示询问区间 \([l,r]\) 中,权值在 \([a,b]\) 范围的数的种类数. \(n\leq 10 ...
- 【BZOJ3809】Gty的二逼妹子序列 莫队 分块
题目描述 给你一个长度为\(n\)的数列,还有\(m\)个询问,对于每个询问\((l,r,a,b)\),输出区间\([l,r]\)有多少范围在\([a,b]\)的权值. \(n\leq 100000, ...
- bzoj 3809 Gty的二逼妹子序列——莫队+分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3809 容易想到树状数组维护值域.但修改和查询都是 log 太慢. 考虑有 nsqrt(n) ...
- bzoj 3809 Gty的二逼妹子序列 —— 莫队+分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3809 据说一开始应该想到莫队+树状数组,然而我想的却是莫队+权值线段树... 如果用权值线段 ...
- 【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块
[BZOJ3809]Gty的二逼妹子序列 Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b ...
- [bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业
[bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业 bzoj bzoj 题目大意:一个序列,m个询问在$[l,r]$区间的$[x,y]$范围内的数的个数/种类. ...
- 3809: Gty的二逼妹子序列
3809: Gty的二逼妹子序列 链接 分析: 和这道AHOI2013 作业差不多.权值是1~n的,所以对权值进行分块.$O(1)$修改,$O(\sqrt n)$查询. 代码: #include< ...
随机推荐
- phpredis命令
<?php //redis //检查一个扩展是否已经加载.大小写不敏感. if (!function_exists('redis')) { echo '不支持 redis'; return ; ...
- phpstorm代码提示不小心关了,如何开启
在phpstrom右下角单击如图 出现event log窗口 如果不是 单击切换取消节电模式即可开启代码提示.
- python 中 pynlpir错误 Cannot Open Configure file pynlpir\Data\Configure.xml 解决
在用python做分词.数据处理的时候,想调用pynlpir库,pynlpir.open()时出现错误,更新一下授权文件还是错误, 仔细一看错误是:Cannot Open Configure file ...
- Python学习手册之Python异常和文件
在上一篇文章中,我们介绍了 Python 的函数和模块,现在我们介绍 Python 中的异常和文件. 查看上一篇文章请点击:https://www.cnblogs.com/dustman/p/9963 ...
- B -- POJ 1208 The Blocks Problem
参考:https://blog.csdn.net/yxz8102/article/details/53098575 https://www.cnblogs.com/tanjuntao/p/867892 ...
- XStream轻松转换xml和java对象
首先引入所需的jar: xstream-1.4.9.xpp3_min-1.1.4c.dom4j-1.6.1, 或用maven管理jar包时在pom.xml中添加: <!-- https://mv ...
- jmeter插件下载
https://jmeter-plugins.org/wiki/Start/ 插件下载好后,将插件lib目录下的jar包放在jmeter安装目录下的lib里,插件ext目录下的jar包放在jmeter ...
- ACE_Select_Reactor_T 介绍 (2)
本章目录 ACE_Select_Reactor_T 介绍 类继承图 类协作图 类主要成员变量 事件处理函数调用图 事件处理主流程 handle_events 函数流程 handle_events_i ...
- Spring.Net在ASP.NET Mvc里使用的一个小例子
就贴个小例子,就不注意格式了. 1.下载dll NuGet的下载地址:http://docs.nuget.org/docs/start-here/installing-nuget 在vs的NuGet里 ...
- 深入Python的类和对象
多态:不同的子类对象,可以调用相同的父类方法,通过改写父类的方法,产生不同的执行结果 instance和type的区别: instance能够顺延到父类,比对对象与父类是否类型一致.而type只能比对 ...