洛谷 P2611 [ZJOI2012]小蓝的好友 解题报告
P2611 [ZJOI2012]小蓝的好友
题目描述
终于到达了这次选拔赛的最后一题,想必你已经厌倦了小蓝和小白的故事,为了回馈各位比赛选手,此题的主角是贯穿这次比赛的关键人物——小蓝的好友。
在帮小蓝确定了旅游路线后,小蓝的好友也不会浪费这个难得的暑假。与小蓝不同,小蓝的好友并不想将时间花在旅游上,而是盯上了最近发行的即时战略游戏——SangoCraft。但在前往通关之路的道路上,一个小游戏挡住了小蓝的好友的步伐。
“国家的战争其本质是抢夺资源的战争”是整款游戏的核心理念,这个小游戏也不例外。简单来说,用户需要在给定的长方形土地上选出一块子矩形,而系统随机生成了N个资源点,位于用户所选的长方形土地上的资源点越多,给予用户的奖励也越多。悲剧的是,小蓝的好友虽然拥有着极其优秀的能力,但同时也有着极差的RP,小蓝的好友所选的区域总是没有一个资源点。
终于有一天,小蓝的好友决定投诉这款游戏的制造厂商,为了搜集证据,小蓝的好友想算出至少包含一个资源点的区域的数量。作为小蓝的好友,这自然是你分内之事。
输入输出格式
输入格式:
每个输入文件中仅包含一个测试数据。
第一行包含由两个空格隔开的正整数\(R\),\(C\),\(N\),表示游戏在一块\([1,R] \times [1,C]\)的地图上生成了\(N\)个资源点。
接下来有\(N\)行,每行包含两个整数 \(x,y\),表示这个资源点的坐标
\((1 \le x \le r,1 \le y \le C)\)
输出格式:
输出文件应仅包含一个整数,表示至少包含一个资源点的区域的数量。
具体的说,设\(N\)个资源点的坐标为\((i=1..n)\),你需要计算有多少个四元组\((L_B,D_B,R_B,U_B)\)满足\(1<=L_B<=R_B<=R,1<=D_B<=U_B<=C\),且存在一个\(i\)使得 \(L_B<=x_i<=R_B,D_B<=y_i<=U_B\)均成立。
说明
对于\(20\%\)的数据,\(N<=50\)。
对于\(40\%\)的数据,\(N<=2000\)。
对于\(100\%\)的数据,\(R,C<=40000,N<=100000\),资源点的位置两两不同,且位置为随机生成。
我们首先弄清楚我们咋统计的
先把矩形蓝白出来

然后我们对矩形固定一个下边界,设为\(down\)
然后我们枚举所取矩形的左边界与右边界
如何不重不漏的把所有可行上边界统计呢?

比方说,黑线是矩形下边界,左右边界现在是任意枚举的,那么红色箭头范围内就是上边界可取的集合了
我们发现,上边界的最下取值点与最低的那个点相连
那么我们可以枚举每个左右边界,然后找到最低的那个点,我们就得到了一个优秀的\(O(N^4)\)的解法辣
注:这里把矩形规模称作\(N\),把点的个数称作\(K\)
取最低点的优化很容易搞成\(O(N^3)\)的,然而这样布星。
我们像CDQ分治那样进行统计
具体的,对每一个固定的下边界,每一列都有唯一确定的最低的点
我们以第\(x\)列的\(x\)为二叉排序树的关键字,以那个最低的点的行数\(y\)为大根堆的关键字,建立一颗\(treap\)
在统计每一个固定的下边界时,每个点的贡献都是 (左儿子大小+1)\(\times\) (右儿子大小+1) \(\times\) 堆的关键字
表示,左边区间可取集合,右边区间可取集合和上边界可取集合
当然堆值可能会变,我们需要在改变的时候进行调整
这时候一个很显然的\(O(N^2)\)做法就有了
我们改完一行去遍历整棵树就可以了。
至于修改的复杂度,因为数据随机,可以看做是\(O(KlogN)\)的
如果我们对每个点维护它及它儿子的贡献,每次改的时候就只需要查询根节点就行辣
复杂度:\(O(KlogN)\)(数据随机)
Code:
#include <cstdio>
#include <algorithm>
#define ls ch[now][0]
#define rs ch[now][1]
#define fa par[now]
#define ll long long
const int N=1e5+10;
const int M=4e4+10;
int n,m,k;
std::pair <int,int > dx[N];
ll sum[M],dat[M],siz[M],ans;int ch[M][2],par[M],root;
int build(int l,int r)
{
if(l>r) return 0;
if(l==r) {siz[l]=1;return l;}
int now=l+r>>1;
ls=build(l,now-1);
if(ls) par[ls]=now;
rs=build(now+1,r);
if(rs) par[rs]=now;
siz[now]=siz[ls]+siz[rs]+1;
return now;
}
void updata(int now)
{
sum[now]=dat[now]*(siz[ls]+1ll)*(siz[rs]+1ll)+sum[ls]+sum[rs];
siz[now]=siz[ls]+siz[rs]+1;
}
int identity(int now){return ch[fa][1]==now;}
void connect(int f,int now,int typ){fa=f;ch[f][typ]=now;}
void Rotate(int now)
{
int p=fa,typ=identity(now);
if(p==root) root=now;
connect(p,ch[now][typ^1],typ);
connect(par[p],now,identity(p));
connect(now,p,typ^1);
updata(p),updata(now);
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
root=build(1,m);
for(int i=1;i<=k;i++)
scanf("%d%d",&dx[i].first,&dx[i].second);
std::sort(dx+1,dx+1+k);
int las=1;dat[0]=n+1;
for(int i=1;i<=k;i++)
{
while(las!=dx[i].first)
ans+=sum[root],++las;
int now=dx[i].second;
dat[now]=dx[i].first;
while(dat[fa]<dat[now])
Rotate(now);
while(now) updata(now),now=fa;
}
while(las<=n)
ans+=sum[root],++las;
printf("%lld\n",ans);
return 0;
}
2018.8.26
洛谷 P2611 [ZJOI2012]小蓝的好友 解题报告的更多相关文章
- 洛谷 P2323 [HNOI2006]公路修建问题 解题报告
P2323 [HNOI2006]公路修建问题 题目描述 输入输出格式 输入格式: 在实际评测时,将只会有m-1行公路 输出格式: 思路: 二分答案 然后把每条能加的大边都加上,然后加小边 但在洛谷的题 ...
- 洛谷 P1852 [国家集训队]跳跳棋 解题报告
P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...
- 洛谷 P3299 [SDOI2013]保护出题人 解题报告
P3299 [SDOI2013]保护出题人 题目描述 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企 ...
- 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告
P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...
- 洛谷 P2463 [SDOI2008]Sandy的卡片 解题报告
P2463 [SDOI2008]Sandy的卡片 题意 给\(n(\le 1000)\)串,定义两个串相等为"长度相同,且一个串每个数加某个数与另一个串完全相同",求所有串的最长公 ...
- 洛谷 P2774 方格取数问题 解题报告
P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...
- 洛谷 画栅栏Painting the Fence 解题报告
P2205 画栅栏Painting the Fence 题目描述 \(Farmer\) \(John\) 想出了一个给牛棚旁的长围墙涂色的好方法.(为了简单起见,我们把围墙看做一维的数轴,每一个单位长 ...
- 洛谷 P2764 最小路径覆盖问题 解题报告
P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...
- 洛谷 P2057 [SHOI2007]善意的投票 解题报告
P2057 [SHOI2007]善意的投票 题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...
随机推荐
- laravel框架excel 的导入导出功能
1.简介 Laravel Excel 在 Laravel 5 中集成 PHPOffice 套件中的 PHPExcel,从而方便我们以优雅的.富有表现力的代码实现Excel/CSV文件的导入和导出. ...
- 8.1 编写USB鼠标驱动程序,并测试
学习目标:编写USB鼠标驱动程序,并测试(将USB鼠标的左键当作L按键,将USB鼠标的右键当作S按键,中键当作回车按键). 一.怎么写USB设备驱动程序?步骤如下: 1. 首先先定义全局变量usb_d ...
- 使用virtual安装Windows系列操作系统总结
最近在安装Windows操作系统的过程中,发现总是报错,无法安装成功,后来经过不断地摸索,发现根本的问题在于镜像,所以在以后的大文件传输下载后,一定要校验其MD5值是否与源文件一致,需要的朋友可以联系 ...
- 【UE4】二十六、Look at camera 蓝图
如图,把BP_Cube替换为你需要的对象(如3DUI等)即可.
- struts2官方 中文教程 系列十四:主题Theme
介绍 当您使用一个Struts 2标签时,例如 <s:select ..../> 在您的web页面中,Struts 2框架会生成HTML,它会显示外观并控制select控件的布局.样式和 ...
- thrift安装
yum -y install gcc-c++ autoconf automake sysconftool boost boost-devel libtool perl-ExtUtils-MakeMak ...
- define 和 const常量有什么区别?
define在预处理阶段进行替换,const常量在编译阶段使用 宏不做类型检查,仅仅进行替换,const常量有数据类型,会执行类型检查 define不能调试,const常量可以调试 define定义的 ...
- hadoop与mysql数据库的那点事
转眼间已经接触了hadoop两周了,从之前的极力排斥到如今的有点喜欢,刚开始被搭建hadoop开发环境搞得几乎要放弃,如今学会了编写小程序,每天都在成长一点挺好的,好好努力,为自己的装备库再填 ...
- 今日Linux
一.复习了vi 三个模式下的一些操作.贴上一些比较常用,个人觉得比较难记的操作.1.一般模式:h 光标向左移动一个字符j 光标向下移动一个字符K 光标向上移动一个字符l 光标向右移动一个 ...
- 第九篇 Python数据类型之集合
集合 set 写在最前,必须要会的:1.长度len2.成员运算in和not in3.|合集4.&交集5.-差集6.^对称差集7.==8.父集:>,>= 9.子集:<,< ...