hdu4746莫比乌斯反演进阶题
Mophues
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327670/327670 K (Java/Others)
Total Submission(s): 1922 Accepted Submission(s): 791
C = p1×p2× p3× ... × pk
which p1, p2 ... pk are all prime numbers.For example, if C = 24, then:
24 = 2 × 2 × 2 × 3
here, p1 = p2 = p3 = 2, p4 = 3, k = 4
Given two integers P and C. if k<=P( k is the number of C's prime factors), we call C a lucky number of P.
Now, XXX needs to count the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of a given P ( "gcd" means "greatest common divisor").
Please note that we define 1 as lucky number of any non-negative integers because 1 has no prime factor.
Then Q lines follow, each line is a test case and each test case contains three non-negative numbers: n, m and P (n, m, P <= 5×105. Q <=5000).
for(int i=;i<=n;++i)//枚举每个因子
if(d[i]<=k)//如果因子的素数质因子小于等于k
for(int j=i;j<=n;j+=i) ans+=u(j/i)*(n/i)*(m/i)//枚举F(i);
利用的是第二个,然后可以发现,对于每个数字i,他的倍数j的系数都要加上u[j/i],可以与处理出来U(N),其中U(i)就是u[i/第一个因子]+u[i/第二个因子]+....(这里的U先不考虑素因子个数限制)
那么上述式子就可以化简成为
for(int i=;i<=n;++i) ans+=U(i)*(n/i)*(m/i);//直接枚举
然后U(i)考虑素因子个数限制的话,那么显然预处理也是可以搞出来的,详细见代码,代码里的cnt[N][19]就是U考虑限制的。
然后就是普通的分块操作,为了简化时间,因为W=(n/i)*(m/i),i倘若在一定范围内,这个W是不变的,所以可以加速。
所以最后就是这样了
for(int i=,last=i;i<=n;i=last+){
last=min(n/(n/i),m/(m/i));
ans+=(ll)(cnt[last][k]-cnt[i-][k])*(n/i)*(m/i);
}
#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
using namespace std;
const int maxn = ;
typedef long long ll;
int mu[maxn],sum[maxn],num[maxn];
ll cnt[maxn][];
bool flag[maxn];
vector<int>prime;
void init(){
mu[]=;
for(int i=;i<maxn;i++){
if(!flag[i]){
prime.push_back(i);
mu[i]=-;
num[i]=;
}
for(int j=;j<prime.size()&&i*prime[j]<maxn;j++){
flag[i*prime[j]]=true;
num[i*prime[j]]=num[i]+;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else {mu[i*prime[j]]=;break;}
}
}
for(int i=;i<maxn;i++){
for(int j=i;j<maxn;j+=i){
cnt[j][num[i]]+=mu[j/i];
}
}
for(int i=;i<maxn;i++){
for(int j=;j<;j++){
cnt[i][j]+=cnt[i][j-];
}
}
for(int i=;i<maxn;i++){
for(int j=;j<;j++){
cnt[i][j]+=cnt[i-][j];
}
}
}
int main(){
init();
int q;
scanf("%d",&q);
while(q--){
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
k=min(k,);
ll ans=;
if(n>m)swap(n,m);
for(int i=,last=i;i<=n;i=last+){
last=min(n/(n/i),m/(m/i));
ans+=(ll)(cnt[last][k]-cnt[i-][k])*(n/i)*(m/i);
}
//printf("%lld\n",ans);
printf("%I64d\n",ans);
}
}
hdu4746莫比乌斯反演进阶题的更多相关文章
- SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)
Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...
- 莫比乌斯反演进阶-洛谷P2257/HDU5663
学了莫比乌斯反演之后对初阶问题没有任何问题了,除法分块也码到飞起,但是稍微变形我就跪了.用瞪眼观察法观察别人题解观察到主要内容除了柿子变形之外,主要就是对于miu函数的操作求前缀和.进而了解miu函数 ...
- hdu4746莫比乌斯反演+分块
http://blog.csdn.net/mowayao/article/details/38875021 题意: 5000组样例. 问你[1,n] 和 [1,m]中有多少对数的GCD的素因子个数小于 ...
- BZOJ1011 莫比乌斯反演(基础题
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...
- hdu1695莫比乌斯反演模板题
hdu1695 求1<=i<=n&&1<=j<=m,gcd(i,j)=k的(i,j)的对数 最后的结果f(k)=Σ(1<=x<=n/k)mu[x]* ...
- BZOJ 2440 完全平方数 莫比乌斯反演模板题
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2440 题目大意: 求第k个无平方因子的数 思路: 二分答案x,求1-x中有多少个平方因 ...
- HDU 4746 (莫比乌斯反演) Mophues
这道题看巨巨的题解看了好久,好久.. 本文转自hdu4746(莫比乌斯反演) 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<= ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
- 【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
[UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 ...
随机推荐
- Android 5.0系统默认颜色
伴随着 Android5.0 的发布也更新了support-v7-appcompat 到 V21,其中增加了 ToolBar.recyclerview.cardview 等控件. Android5.0 ...
- 【Leetcode】104. 二叉树的最大深度
题目 给定一个二叉树,找出其最大深度. 二叉树的深度为根节点到最远叶子节点的最长路径上的节点数. 说明: 叶子节点是指没有子节点的节点. 示例:给定二叉树 [3,9,20,null,null,15,7 ...
- Openstack HA集群5-Keystone HA
# yum install -y openstack-keystone httpd mod_wsgi # mysql -u root -p -e "CREATE DATABASE keyst ...
- CentOS 7 网络优化(升级内核、开启 BBR)
我之前介绍过关于 TCP 一些优化,包括安装使用 TCP 优化软件,这些适用于较低版本的 CentOS 系统,例如 CentOS 6,详细可参考<Linux 下的一些简单的 TCP 优化> ...
- JDK 安装及配置环境变量(基于 Linux)
1.先确定虚拟机系统是 32 位还是 64 位 #Linux 指令下输入 getconf LONG_BIT 2.建目录 JDK mkdir JDK 3.通过 rz 导入压缩包 jdk-8u144-li ...
- Web框架,Hibernate向数据库插入数据,数据库没有值怎么办?
用web框架技术,使用Hibernate向数据库添加信息,控制台显示插入成功的语句,可是数据库却没有值:错误如下: (1)不要自己创建数据库!!,Web框架可以自己自动生成,自己创建可能会报错! (2 ...
- N - 寿司晚宴 HYSBZ - 4197 状压dp
N - 寿司晚宴 HYSBZ - 4197 推荐题解 这个题目我觉得还是很难的,借助题解写出来的,题解还看了很久,现在还是不是很理解. 首先这个数比较大有500,如果直接就像这个题目S - Query ...
- Java 常用API(二)
目录 Java 常用API(二) 1. Object类 2. Date类 概述 构造方法和成员方法 3. DateFormat类 概述 SimpleDateFormat类 练习 4. Calendar ...
- 保姆式教学:Typora+图床功能
众所周知,markdown编辑器typora是一款很好的可视化.所见即所得型的编辑器! 但是,因为图片问题,本菜狗常常不能把某些写好的markdown文档直接复制粘贴进博客而不加修改-- 不过,前几天 ...
- 推荐算法_CIKM-2019-AnalytiCup 冠军源码解读
最近在帮一初创app写推荐系统,顺便学习一波用户兴趣高速检索的冠军算法. 写总结前贴出冠军代码的git地址:https://github.com/ChuanyuXue/CIKM-2019-Analyt ...