模板最主要的是自己看得舒服,不会给自己留隐患,调起来比较简单,板子有得是,最主要的是改造出适合你的那一套。                  ——mzz

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int mod=;
struct Hash_Tablet{
int val,nex,id;
}edge[mod<<];int first[mod<<],num;
int a,b,c,ans;
void init(){
memset(first,,sizeof(first));
num=;
}
void insert(int val,int j){
int Hval=val%mod;
edge[++num].val=val;
edge[num].id=j;
edge[num].nex=first[Hval];
first[Hval]=num;
}
int find(int val){
int Hval=val%mod;
for(int i=first[Hval];i;i=edge[i].nex)
if(edge[i].val==val)
return edge[i].id;
return -;
}
int Bsgs(int a,int b,int c){
init();
if(b==) return ;
int m=ceil(sqrt(c*1.0));
int j,p=,x=;
for(int i=;i<m;i++,p=p*a%c)
insert(p*b%c,i);
for(int i=m;i<=c+m;i+=m){
if((j=find(x=x*p%c))!=-)
return i-j;
}return -;
}
signed main(){
while(~scanf("%lld%lld%lld",&c,&a,&b)){
ans=Bsgs(a%c,b%c,c);
ans==-?puts("no solution"):printf("%lld\n",ans);
}return ;
}

以一道叫Discrete Logging的题为例。

Bsgs模板的更多相关文章

  1. BSGS 模板

    模板如下: 扩展版本: 求解a^k=b %p 求k,最小的k一定小于p,否则会重复,否则无解 *********************** gcd(a,p)=1时 设k=mi+v m=sqrt(p) ...

  2. bzoj2242,洛谷2485----SDOI2011计算器(exgcd,qsm,bsgs模板)

    就是一道模板题! 这里再强调一下 BSGS 考虑方程\(a^x = b \pmod p\) 已知a,b,p\((2 \le p\le 10^9)\),其中p为质数,求x的最小正整数解 解法: 注意到如 ...

  3. BSGS模板(慢速)

    //author Eterna #define Hello the_cruel_world! #pragma GCC optimize(2) #include<iostream> #inc ...

  4. bzoj 2242 [SDOI2011]计算器——BSGS模板

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2242 第一道BSGS! 咳咳,我到底改了些什么?…… 感觉和自己的第一版写的差不多……可能是 ...

  5. 【Luogu】P2485计算器(快速幂,exgcd和Bsgs模板)

    题目链接 题目描述非常直接,要求你用快速幂解决第一问,exgcd解决第二问,bsgs解决第三问. emmmm于是现学bsgs 第二问让求最小整数解好烦啊…… 假设我们要求得方程$ax+by=c(mod ...

  6. 2019牛客多校第五场C generator 2 hash,bsgs模板

    generator 2 题意 给出\(x_0,a,b,p\),有方程\(x_i\equiv (a*x_{i-1}+b)(\% p)\),求最小的i,使得\(x_i=v\),不存在输出-1 分析 经过公 ...

  7. U9249 【模板】BSGS

    题目描述 给定a,b,p,求最小的非负整数x 满足a^x≡b(mod p) 若无解 请输出“orz” 输入输出格式 输入格式: 三个整数,分别为a,b,p 输出格式: 满足条件的非负整数x 输入输出样 ...

  8. 【BSGS】BZOJ3239 Discrete Logging

    3239: Discrete Logging Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 729  Solved: 485[Submit][Statu ...

  9. BZOJ3239Discrete Logging——BSGS

    题目大意:给出$P,B,N$,求最小的正整数$L$,使$B^L\equiv N(mod\ P)$. $BSGS$模板题. #include<set> #include<map> ...

随机推荐

  1. Git撤回已经推送(push)至远程仓库提交(commit)的版本

    背景 所以,经常会遇到已经提交远程仓库,但是又不是我想要的版本,要撤下来. 回退版本一般使用git reset,又分为: # 不删除工作空间改动代码,撤销commit,不撤销git add . git ...

  2. RFC destination fails with error Incomplete Logon Data after system copy

    1. 问题现象 1.1在system copy后,提示RFC报错Unable to configure STMS 2.  重要的参考文件: 2.1RFC passwords not available ...

  3. Chrome安装crx文件的插件时出现“程序包无效”

    有趣的事,Python永远不会缺席! 如需转发,请注明出处:小婷儿的python   https://www.cnblogs.com/xxtalhr/p/11043453.html 链接:https: ...

  4. 【OF框架】框架Cache/Session在负载均衡部署时,切换Memory/Redis测试

    一.切换Memory/Redis 第一步:安装运行Redis服务,获得连接参数. 第二步:在appsettings.json中配置 EnableRedisCache 和 Redisconnection ...

  5. WebClient 与HttpClient 的区别

    需要搜索下资料. -------------------------------------------------- 微软文档介绍,新的开发中推荐使用:HttpClient WebClient 文档 ...

  6. Codeforces Round #519 D - Mysterious Crime

    题目 题意: 在m组数,每组有n个数(数的范围1-n)中,找到某些序列 使它是每组数的一个公共子序列,问这样的某些序列的个数? 思路: 不难想出答案ans是≥n的. 创立一个next数组,使每组中第i ...

  7. 4.kafka生产者---向Kafka中写入数据(转)

    转:  https://www.cnblogs.com/sodawoods-blogs/p/8969513.html (1)生产者概览 (1)不同的应用场景对消息有不同的需求,即是否允许消息丢失.重复 ...

  8. linux下环境管理anaconda3

    我之前在centos之安装单独python3.6,大家都知道centos自带python2.7,通过输入python,和python3来控制想要使用python2,或者python3,如今想要要在li ...

  9. Wide & Deep Learning for Recommender Systems

    Wide & Deep Learning for Recommender Systems

  10. 《3+1团队》第七次作业:团队项目设计完善&编码

    项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 3+1团队 团队博客地址 https://home.cnblogs.com/u/3-1group ...