CSU 1804: 有向无环图(拓扑排序)
http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804
题意:……
思路:对于某条路径,在遍历到某个点的时候,之前遍历过的点都可以到达它,因此在这个时候对答案的贡献就是∑(a1 + a2 + a3 + ... + ai) * bv,其中a是之前遍历到的点,v是当前遍历的点。
这样想之后就很简单了。类似于前缀和,每次遍历到一个v点,就把a[u]加给a[v],然后像平时的拓扑排序做就行了。
#include <bits/stdc++.h>
using namespace std;
#define N 100010
typedef long long LL;
typedef pair<int, LL> P;
const int MOD = 1e9 + ;
struct Edge {
int v, nxt;
} edge[N];
int vis[N], n, m, head[N], tot, in[N];
LL a[N], b[N], ans;
queue<int> que; void Add(int u, int v) { edge[tot] = (Edge) { v, head[u] }; head[u] = tot++; } void BFS() {
while(!que.empty()) que.pop();
for(int i = ; i <= n; i++)
if(in[i] == ) que.push(i);
while(!que.empty()) {
int u = que.front(); que.pop();
for(int i = head[u]; ~i; i = edge[i].nxt) {
int v = edge[i].v;
ans = (ans + a[u] * b[v] % MOD) % MOD;
a[v] = (a[u] + a[v]) % MOD;
--in[v];
if(in[v] == ) que.push(v);
}
}
} int main() {
while(~scanf("%d%d", &n, &m)) {
for(int i = ; i <= n; i++) scanf("%lld%lld", &a[i], &b[i]);
ans = tot = ;
memset(head, -, sizeof(head));
memset(in, , sizeof(in));
for(int i = ; i <= m; i++) {
int u, v; scanf("%d%d", &u, &v);
Add(u, v); in[v]++;
}
BFS();
printf("%lld\n", ans % MOD);
}
return ;
}
CSU 1804: 有向无环图(拓扑排序)的更多相关文章
- CSU 1804: 有向无环图 拓扑排序 图论
1804: 有向无环图 Submit Page Summary Time Limit: 5 Sec Memory Limit: 128 Mb Submitted: 716 ...
- CSU 1804 - 有向无环图 - [(类似于)树形DP]
题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 ...
- 图->有向无环图->拓扑排序
文字描述 关于有向无环图的基础定义: 一个无环的有向图称为有向无环图,简称DAG图(directed acycline graph).DAG图是一类较有向树更一般的特殊有向图. 举个例子说明有向无环图 ...
- csu 1804 有向无环图
题目地址 分析:从复杂度来看,一定不可能是枚举和来计算.1e5的规模来看,应该是复杂度比较合适. 我是这么想的,对于三个点,假设1->2有a种走法,2->3有b种走法.那么1->3应 ...
- 湖南省第十二届大学生计算机程序设计竞赛 B 有向无环图 拓扑DP
1804: 有向无环图 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 187 Solved: 80[Submit][Status][Web Board ...
- 【拓扑】【宽搜】CSU 1084 有向无环图 (2016湖南省第十二届大学生计算机程序设计竞赛)
题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 题目大意: 一个有向无环图(DAG),有N个点M条有向边(N,M<=105 ...
- csu oj 1804: 有向无环图 (dfs回溯)
题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 中文题意就不说了. dfs从底到根回溯即可,看代码应该能清楚. //#pragma ...
- 有向无环图的应用—AOV网 和 拓扑排序
有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...
- 第十二届湖南省赛 (B - 有向无环图 )(拓扑排序+思维)好题
Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y ...
随机推荐
- Angular route传参
从 router-link-page1 跳转 router-link-page2 和 router-link-page3 通过自定义路由 设置router-link-page2的路由后有3个参数,pa ...
- C# WPF 中用代码模拟鼠标和键盘的操作
原文:C# WPF 中用代码模拟鼠标和键盘的操作 原文地址 C#开发者都知道,在Winform开发中,SendKeys类提供的方法是很实用的.但是可惜的是,在WPF中不能使用这个方法了. 我们知道,在 ...
- JS如何为iframe添加onclick事件
如果页面上有iframe时,鼠标点击在iframe内时,包含iframe的document是不响应任何事件的, 例如: $("#iframe1").click(function() ...
- 数据绑定(三)为Binding指定绑定源的几种方法
原文:数据绑定(三)为Binding指定绑定源的几种方法 Binding的源是数据的来源,所以,只要一个对象包含数据并能通过属性把数据暴露出来,它就能当作Binding的源来使用,常用的办法有: 一. ...
- 【转】Powerdesigner逆向工程从sql server数据库生成pdm
第一步:打开"控制面板"中的"管理工具" 第二步:点击"管理工具"然后双击"数据源(odbc)" 第三步:打开之后,点击 ...
- painter半透明的 底层窗口全透明背景
- Tensorflow-常见报错解决方案
1. AttributeError: 'module' object has no attribute 'SummaryWriter' tf.train.SummaryWriter 改为:tf.sum ...
- 程序员该如何过好他的整个职业生涯?(最重要的是你得一直往前走。拐点不是你的工资。想起很久前有个人说我“逻辑性”比较强)good
作者|池建强 编辑|小智 戳阅读原文,获得短信提醒,不错过下次InfoQ大咖说直播! 1 写在前面 加入极客邦的第一天就被拉到了「大咖说」的现场,这也是我始料未及的事情.从锤子科技正式离职之后,我 ...
- 制作Qt应用程序的插件(使用QtPlugin),对比DLL它是全平台通用的
在Qt下,插件有两种形式,一种是用于QtCreator下,扩展IDE功能.另一种是用于扩展开发者的应用.本文要讲的是后者. 定义一个纯虚类作为插件接口 #include <QtPlugin> ...
- 核心思想:自由职业的所谓自由,必须先职业,然后才能自由(还要对抗自己的惰性,提前寻找客户)good
除了前面提到的专业性,还要足够自律,能够管理好自己的时间和精力. 具体来说,需要目标管理和时间(精力)管理. 所谓目标管理,对于自由职业者来讲,就是要识别出自己最擅长的方向,确立自己可以提供的最有价值 ...