[Tensorflow] RNN - 02. Movie Review Sentiment Prediction with LSTM
From: Predicting Movie Review Sentiment with TensorFlow and TensorBoard
Ref: http://www.cnblogs.com/libinggen/p/6939577.html
使用LSTM的原因之一是: 解决RNN Deep Network的Gradient错误累积太多,以至于Gradient归零或者成为无穷大,所以无法继续进行优化的问题。
Thanks to Jürgen Schmidhuber
Using the data from an old Kaggle competition “Bag of Words Meets Bags of Popcorn”
import pandas as pd
import numpy as np
import tensorflow as tf
import nltk, re, time
from nltk.corpus import stopwords
from collections import defaultdict
from tqdm import tqdm
from sklearn.model_selection import train_test_split
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from collections import namedtuple
Preprocessing
The data is formatted as .tsv
- remove stopwords
- Convert words to lower case
def clean_text(text, remove_stopwords=True):
'''Clean the text, with the option to remove stopwords''' # Convert words to lower case and split them
text = text.lower().split() # Optionally, remove stop words
if remove_stopwords:
stops = set(stopwords.words("english"))
text = [w for w in text if not w in stops] text = " ".join(text) # Clean the text
text = re.sub(r"<br />", " ", text)
text = re.sub(r"[^a-z]", " ", text)
text = re.sub(r" ", " ", text) # Remove any extra spaces
text = re.sub(r" ", " ", text) # Return a list of words
return(text)
Data clean
Tokenize
# Tokenize the reviews
all_reviews = train_clean + test_clean
tokenizer = Tokenizer()
tokenizer.fit_on_texts(all_reviews)
print("Fitting is complete.") train_seq = tokenizer.texts_to_sequences(train_clean)
print("train_seq is complete.") test_seq = tokenizer.texts_to_sequences(test_clean)
print("test_seq is complete")
word_index = tokenizer.word_index
NB: punctuation is useful!
[“The”, “cat”, “went”, “to”, “the”, “zoo”, “.”] --> [1, 2, 3, 4, 1, 5, 6]
Limiting your vocabulary
Your model should benefit from limiting your vocabulary to more common words
because it has seen each word in the text multiple times.
Reviews with the same length
I limited mine to 200 to increase the training speed of my model.
Build Graph with LSTM
def build_rnn(n_words, embed_size, batch_size, lstm_size, num_layers, dropout, learning_rate, multiple_fc, fc_units):
'''Build the Recurrent Neural Network''' tf.reset_default_graph() # Declare placeholders we'll feed into the graph
with tf.name_scope('inputs'):
inputs = tf.placeholder(tf.int32, [None, None], name='inputs') with tf.name_scope('labels'):
labels = tf.placeholder(tf.int32, [None, None], name='labels') keep_prob = tf.placeholder(tf.float32, name='keep_prob') # Create the embeddings
with tf.name_scope("embeddings"):
embedding = tf.Variable(tf.random_uniform((n_words, embed_size), -1, 1))
embed = tf.nn.embedding_lookup(embedding, inputs) # Build the RNN layers
with tf.name_scope("RNN_layers"):
lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size)
drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)
cell = tf.contrib.rnn.MultiRNNCell([drop] * num_layers) # Set the initial state
with tf.name_scope("RNN_init_state"):
initial_state = cell.zero_state(batch_size, tf.float32) # Run the data through the RNN layers
with tf.name_scope("RNN_forward"):
outputs, final_state = tf.nn.dynamic_rnn(
cell,
embed,
initial_state=initial_state) # Create the fully connected layers
with tf.name_scope("fully_connected"): # Initialize the weights and biases
weights = tf.truncated_normal_initializer(stddev=0.1)
biases = tf.zeros_initializer() dense = tf.contrib.layers.fully_connected(outputs[:, -1],
num_outputs = fc_units,
activation_fn = tf.sigmoid,
weights_initializer = weights,
biases_initializer = biases) dense = tf.contrib.layers.dropout(dense, keep_prob) # Depending on the iteration, use a second fully connected
layer
if multiple_fc == True:
dense = tf.contrib.layers.fully_connected(dense,
num_outputs = fc_units,
activation_fn = tf.sigmoid,
weights_initializer = weights,
biases_initializer = biases) dense = tf.contrib.layers.dropout(dense, keep_prob) # Make the predictions
with tf.name_scope('predictions'):
predictions = tf.contrib.layers.fully_connected(dense,
num_outputs = 1,
activation_fn=tf.sigmoid,
weights_initializer = weights,
biases_initializer = biases) tf.summary.histogram('predictions', predictions) # Calculate the cost
with tf.name_scope('cost'):
cost = tf.losses.mean_squared_error(labels, predictions)
tf.summary.scalar('cost', cost) # Train the model
with tf.name_scope('train'):
optimizer =
tf.train.AdamOptimizer(learning_rate).minimize(cost) # Determine the accuracy
with tf.name_scope("accuracy"):
correct_pred = tf.equal(tf.cast(tf.round(predictions),
tf.int32),
labels)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
tf.summary.scalar('accuracy', accuracy) # Merge all of the summaries
merged = tf.summary.merge_all() # Export the nodes
export_nodes = ['inputs', 'labels', 'keep_prob','initial_state',
'final_state','accuracy', 'predictions', 'cost',
'optimizer', 'merged']
Graph = namedtuple('Graph', export_nodes)
local_dict = locals()
graph = Graph(*[local_dict[each] for each in export_nodes]) return graph
这里提到了几种思路:
Simple LSTM for Sequence Classification
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
model.add(LSTM(100))
model.add(Dense(1, activation='sigmoid'))
1
2
3
4
5
6
7
|
Epoch 1/3
16750/16750 [==============================] - 107s - loss: 0.5570 - acc: 0.7149
Epoch 2/3
16750/16750 [==============================] - 107s - loss: 0.3530 - acc: 0.8577
Epoch 3/3
16750/16750 [==============================] - 107s - loss: 0.2559 - acc: 0.9019
Accuracy: 86.79%
|
LSTM For Sequence Classification With Dropout
model = Sequential()
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
model.add(Dropout(0.2))
model.add(LSTM(100))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
1
2
3
4
5
6
7
|
Epoch 1/3
16750/16750 [==============================] - 108s - loss: 0.5802 - acc: 0.6898
Epoch 2/3
16750/16750 [==============================] - 108s - loss: 0.4112 - acc: 0.8232
Epoch 3/3
16750/16750 [==============================] - 108s - loss: 0.3825 - acc: 0.8365
Accuracy: 85.56%
|
LSTM and Convolutional Neural Network For Sequence Classification
model = Sequential()
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(LSTM(100))
model.add(Dense(1, activation='sigmoid'))
1
2
3
4
5
6
7
|
Epoch 1/3
16750/16750 [==============================] - 58s - loss: 0.5186 - acc: 0.7263
Epoch 2/3
16750/16750 [==============================] - 58s - loss: 0.2946 - acc: 0.8825
Epoch 3/3
16750/16750 [==============================] - 58s - loss: 0.2291 - acc: 0.9126
Accuracy: 86.36%
|
特征处理
在文本挖掘中做了很大的努力,比如提取关键词、情感分析、word embedding聚类之类都尝试过,但效果都不是很好,
对于文本的特征的建议还是去找出一些除了停用词以外的高频词汇,寻找与这个房屋分类问题的具体联系。
到了头疼的部分了,数据有了,我们得想办法从数据里面拿到有区分度的特征。
- 比如说Kaggle该问题的引导页提供的word2vec就是一种文本到数值域的特征抽取方式,
- 比如说我们在第6小节提到的用户信息提取关键字也是提取特征的一种。
- 比如说在这里,我们打算用在文本检索系统中非常有效的一种特征:TF-IDF(term frequency-interdocument frequency)向量。每一个电影评论最后转化成一个TF-IDF向量。
稍加解释一下,TF-IDF是一种统计方法,用以评估一字词(或者n-gram)对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。这是一个能很有效地判定对评论褒贬影响大的词或短语的方法。
那个…博主打算继续偷懒,把scikit-learn中TFIDF向量化方法直接拿来用,想详细了解的同学可以戳sklearn TFIDF向量类。对了,再多说几句我的处理细节,停用词被我掐掉了,同时我在单词的级别上又拓展到2元语言模型,恩,你可以再加3元4元语言模型…单机内存不够了,先就2元上,凑活用吧…
End.
[Tensorflow] RNN - 02. Movie Review Sentiment Prediction with LSTM的更多相关文章
- [Tensorflow] RNN - 03. MultiRNNCell for Digit Prediction
Ref: http://blog.csdn.net/u014595019/article/details/52759104 Time: 2min Successfully downloaded tra ...
- [Tensorflow] RNN - 01. Spam Prediction with BasicRNNCell
Ref: http://blog.csdn.net/mebiuw/article/details/60780813 Ref: https://medium.com/@erikhallstrm/hell ...
- [Tensorflow] RNN - 04. Work with CNN for Text Classification
Ref: Combining CNN and RNN for spoken language identification Ref: Convolutional Methods for Text [1 ...
- tensorflow rnn 最简单实现代码
tensorflow rnn 最简单实现代码 #!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf from te ...
- TensorFlow (RNN)深度学习 双向LSTM(BiLSTM)+CRF 实现 sequence labeling 序列标注问题 源码下载
http://blog.csdn.net/scotfield_msn/article/details/60339415 在TensorFlow (RNN)深度学习下 双向LSTM(BiLSTM)+CR ...
- TensorFlow RNN MNIST字符识别演示快速了解TF RNN核心框架
TensorFlow RNN MNIST字符识别演示快速了解TF RNN核心框架 http://blog.sina.com.cn/s/blog_4b0020f30102wv4l.html
- Tensorflow进行POS词性标注NER实体识别 - 构建LSTM网络进行序列化标注
http://blog.csdn.net/rockingdingo/article/details/55653279 Github下载完整代码 https://github.com/rockingd ...
- tensorflow RNN循环神经网络 (分类例子)-【老鱼学tensorflow】
之前我们学习过用CNN(卷积神经网络)来识别手写字,在CNN中是把图片看成了二维矩阵,然后在二维矩阵中堆叠高度值来进行识别. 而在RNN中增添了时间的维度,因为我们会发现有些图片或者语言或语音等会在时 ...
- TensorFlow+Keras 02 深度学习的原理
1 神经传递的原理 人类的神经元传递及其作用: 这里有几个关键概念: 树突 - 接受信息 轴突 - 输出信息 突触 - 传递信息 将其延伸到神经元中,示意图如下: 将上图整理成数学公式,则有 y = ...
随机推荐
- 话说extern和static
以前对extern.static的一些东西一直模棱两可.今天好好来梳理了一番.. static关键字 被static修饰的变量或函数称之为静态成员.函数. 存储位置:static修饰的变量存放在静态区 ...
- reac-native环境搭建
转载链接:http://www.ncloud.hk/%E6%8A%80%E6%9C%AF%E5%88%86%E4%BA%AB/react-native%E7%8E%AF%E5%A2%83%E6%90% ...
- TCP/IP协议随笔
今天翻博客的时候看到了TCP/IP协议相关的几篇文章,写的非常好,LZ打算把其中的重点整理一下,虽然都是一些概念性的东西,平时编码的时候可能用不到,但是起码我们应该知道自己是在哪一层编码,又有哪些协议 ...
- 使用 IntraWeb (31) - IntraWeb 的 Xml 操作使用的是 NativeXml
在 IWNativeXml 单元. 知道了这个, 以后在其他 Delphi 程序中也可以直接 Uses IWNativeXml 了. TNativeXml (IWNativeXml.TNativeXm ...
- POI HSSFCellStyle 设置 Excel 单元格样式
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结: 先获取工作薄对象: HSSFWorkbook wb = new HSSFWorkbook(); HSSFSheet sheet = wb ...
- C#编程(七十九)---------- 反射
反射 在介绍翻着之前,先说两个小案例 B超:什么叫B超呢?就是透过肚皮能看到你内脏的情况,不用打开肚子才能看.这是什么样的一种技术呢?B超是B型超声波,它可以透过肚皮通过向你体内发射B型超声波,当超声 ...
- java 线程池 使用实例
在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统 ...
- 【Spark】Spark性能调优
官网:http://spark.apache.org/docs/latest/tuning.html 1.引言 提到Spark与Hadoop的区别,基本最常说的就是Spark采用基于内存的计算方式,尽 ...
- <转>vmp3.0.9全保护拆分解析
以下为了避免插件干扰,故采用x64dbg原版进行分析. 首先我通过检测到调试器的弹窗进行栈回溯,定位到该关键点:CALL eax 由于才接触Vmp,所以是把各个保护拆分开来进行的分析,会比较简单一 ...
- 深入理解C++中public、protected及private用法
深入理解C++中public.protected及private用法 这篇文章主要介绍了C++中public.protected及private用法,对于C++面向对象程序设计来说是非常重要的概念 ...