题意:

这道题目的意思很简单,有t个ACM队,m个题目,题目给出了每个队对每个题目做出的概率大小(0到1之间,包含0和1),要求每个队至少做出一道题(签到题),同时,要求获胜队必须至少能够做出n道题(获胜对不止一个),这到题目实际上就是一个dp+概率论知识,dp的推导也是概率论中的全概率公式推导出来的,之后就是如何利用概率论知识求解问题了。首先解释一下dp如何推导。我们令dp[i][j]为前i道题中做出j道题的概率,那么依据全概率公式,现在有两种情况:

1)第i道题做出来的,在此条件下dp[i][j]=dp[i-1][j-1]

2)第i道题没有做出来,在此条件下dp[i][j]=dp[i-1][j]

那么依据全概率公式dp[i][j]=dp[i-1][j-1]*p[i]+dp[i-1][j]*(1-p[i]),其中p[i]为第i题做出的概率。

状态转移方程确定后,那么就可以求解出前i个题目中做出j道题的概率了。

问题是所有的基本条件都已经确定了,那么题目要求解问题的概率该如何计算。这里,很容易认为每个队至少做出一道题和获胜队至少做出n道题是独立事件。其实不然。应该说他们之间存在包含于被包含的关系,这里分两种情况讨论:

我们将每个队都至少作出一道题记为事件A,获胜队至少作出n道题记为事件B,题目要求的就是p(AB)的结果

1)当n=1时,事件B包含事件A,那么p(AB)就转化为p(A),即为每个队都至少作出一道题的概率。

2)当n>1时,事件A包含事件AB,那么p(AB)就是p(A)-p(A-AB),这里补充说明一下,事件A-AB就是所有队都只作出少于n道题的概率(即作出1到n-1道题的概率)
————————————————
版权声明:本文为CSDN博主「阿杜dyh」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/i_want_to_be_a_god/article/details/25926243

 #include<cstdio>
#include<algorithm>
#include<math.h>
#include<string.h>
using namespace std;
const int maxn=1e3+;
double dp[maxn][][]; //表示第i只队伍在j道题的情况下赢k局的概率
double p[maxn][];
int main()
{
int n,t,m;
while(scanf("%d%d%d",&n,&t,&m)!=EOF){
if(!(n+t+m)) break;
for(int i=;i<t;i++)
for(int j=;j<=n;j++){
scanf("%lf",&p[i][j]);
}
memset(dp,,sizeof(dp));
for(int i=;i<t;i++){
dp[i][][]=;
for(int j=;j<=n;j++){
dp[i][j][]=dp[i][j-][]*(-p[i][j]);
for(int k=;k<=j;k++){
dp[i][j][k]=dp[i][j-][k-]*p[i][j]+dp[i][j-][k]*(-p[i][j]);
}
}
}
double ans=;
for(int i=;i<t;i++)
ans*=-dp[i][n][];
double temp=;
for(int i=;i<t;i++){
double sum=;
for(int j=;j<m;j++)
sum+=dp[i][n][j]; //计算出做出的题在1~n-1的数量的概率;
temp*=sum; //将每一个做不出的概率相乘;
}
ans-=temp; //减去不符合的情况
printf("%.3f\n",ans);
}
return ;
}

概率dp poj 2151的更多相关文章

  1. 概率dp poj 3071

    题目首先给出一个n,表示比赛一共进行n轮,那么队伍就有2^n只队伍输入一个2^n*2^n的矩阵,p[i][j]代表队伍i打败队伍j的概率dp[i][j]代表第i轮比赛的时候,队伍j赢的概率首先初始化时 ...

  2. 矩阵快速幂+概率DP poj 3744

    题意:在一条不满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...

  3. 【POJ】2151:Check the difficulty of problems【概率DP】

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8903   ...

  4. POJ 2151 Check the difficulty of problems (概率DP)

    题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...

  5. 概率dp的边界处理 POJ 2096

    题目地址:https://vjudge.net/problem/POJ-2096 说的是有n个bug,和s个系统.现在一个人一天能发现一个bug,它可能是任何一个系统中的,也可能会发现已经发现过的bu ...

  6. poj 3071 Football(概率dp)

    id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...

  7. POJ 2096 Collecting Bugs (概率DP,求期望)

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

  8. POJ 2096 Collecting Bugs (概率DP)

    题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...

  9. POJ 3156 - Interconnect (概率DP+hash)

    题意:给一个图,有些点之间已经连边,现在给每对点之间加边的概率是相同的,问使得整个图连通,加边条数的期望是多少. 此题可以用概率DP+并查集+hash来做. 用dp(i,j,k...)表示当前的每个联 ...

随机推荐

  1. 曼孚科技:AI机器学习领域常用的15个术语

    机器学习是人工智能(AI)的核心,是使计算机具有智能的根本途径.​ 本文整理了一下机器学习领域常用的15个术语,希望可以帮助大家更好的理解这门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多个领 ...

  2. 初识压缩感知Compressive Sensing

    压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目.最近粗浅地看了这方面一些研究,对于Compressive Sensing有了初步理解,在此分享一些资料与精华.本文针对陶哲轩和Emman ...

  3. vlan划分、本征vlan配置、中继

    命令部分: vlan划分(全局模式) vlan name v10 no shu no shu switchport access vlan vlan name v20 inter vlan no sh ...

  4. Python-Django学习笔记(三)-Model模型的编写以及Oracle数据库的配置

    Django使用的 MTV 设计模式(Models.Templates.Views) 因此本节将围绕这三部分并按照这个顺序来创建第一个页面 模型层models.py 模型是数据唯一而且准确的信息来源. ...

  5. Day5 多线程 锁

    synchronized保证操作原子性 这是因为对变量进行读取和写入时,结果要正确,必须保证是原子操作.原子操作是指不能被中断的一个或一系列操作. 通过加锁和解锁的操作,就能保证3条指令总是在一个线程 ...

  6. PP: Learning representations for time series clustering

    Problem: time series clustering TSC - unsupervised learning/ category information is not available. ...

  7. 动图演示23个鲜为人知的VSCode快捷键

    动图演示23个鲜为人知的VSCode快捷键 原文地址:dev.to/devmount/23… 代码同步浏览器 安装vccode 安装live server插件 尽管我在VS Code中经常使用许多快捷 ...

  8. [object object]

    第一个object代表用户自定义的对象的属性. 第二个object代表用户自定义的对象的方法. 是valueOf返回的一个字符串另外你打错了吧应该是[object Object]表示对象的类型是obj ...

  9. word中去除所有table键

    1.打开word---文件---选项---显示,不勾选制表符 2.选择需要的文本,按[CTRL+H]查找替换, 3.将鼠标定位至“查找内容”,点击“特殊格式-制表符”,然后出现^t,在“替换为”中输入 ...

  10. linux交互执行命令,expect

    转载 http://donex.blog.51cto.com/2005970/834467 原文比较乱,只能参考 本地交互执行: 1. 修改shell#!/usr/bin/expectset USER ...