论文《A Generative Entity-Mention Model for Linking Entities with Knowledge Base》
A Generative Entity-Mention Model for Linking Entities with Knowledge Base
一.主要方法
提出了一种生成概率模型,叫做entity-mention model.
Explanation:
In our model, each name mention to be linked is modeled as a sample generated through a three-step generative story, and the entity knowledge is encoded in the distribution of entities in document P(e), the distribution of possible names of a specific entity P(s|e), and the distribution of possible contexts of a specific entity P(c|e). To find the referent entity of a name mention, our method combines the evidences from all the three distributions P(e), P(s|e) and P(c|e).
The P(e), P(s|e) and P(c|e) are respectively called the entity popularity model, the entity name model and the entity context model
二.相关介绍
建模
Given a set of name mentions M = {m1, m2, …, mk} contained in documents and a knowledge base KB containing a set of entities E = {e1, e2, …, en}, an entity linking system is a function s : M ® E which links these name mentions to their referent entities in KB.
Popularity Knowledge
实体的流行度知识告诉我们一个实体出现在文档中的可能性
Name Knowledge
名称知识告诉我们实体的可能名称,以及名称引用特定实体的可能性。
Context Knowledge
上下文知识告诉我们一个实体出现在特定上下文中的可能性。
三.The Generative Entity-Mention Model for Entity Linking
Explanation
- 首先,该模型根据P(e)中实体的分布情况,从给定知识库中选择提及名称的引用实体e。
- 其次,该模型根据被引用实体P(s|e)的可能名称的分布情况输出所述名称的名称s。
- 最后,模型根据被引用实体P(c|e)可能的上下文分布输出所提到的名称的上下文c。
model
The probability of a name mention m (its context is c and its name is s) referring to a specific entity e can be expressed as the following formula (here assume that s and c are independent):
Give a name mention m, to perform entity linking, we need to find the entity e which maximizes the probability P(e|m).
Candidate Selection
building a name-to-entity dictionary using the redirect links, disambiguation pages, anchor texts of Wikipedia, then the candidate entities of a name mention are selected by finding its name’s corresponding entry in the dictionary
四.Model Estimation
Entity Popularity Model
----》
where Count(e) is the count of the name mentions whose referent entity is e, and the |M| is the total name mention size.
Entity Name Model
比如,我们希望 P(Michael Jordan|Michael Jeffrey Jordan) 高,,P(MJ|Michael Jeffrey Jordan) 也高。 P(Michael I. Jordan|Michael Jeffrey Jordan) 应该是0.
因此,名称模型可以通过首先从数据集中收集所有(实体、名称)对来估计。
缺点:它不能正确地处理一个不可见的实体或一个不可见的名称。
Eg: “MJ”在Wikipedia指的并不是Michael Jeffrey Jordan, 这个the name model 将不能识别 “MJ” 就是Michael Jeffrey Jordan.
↓
1) It is retained (translated into itself);
2) It is translated into its acronym;
3) It is omitted(translated into the word NULL);
4) It is translated into another word (misspelling or alias).
wheree is a normalization factor, f is the full name of entity e, lf is the length of f, ls is the length of the name s, si the i th word of s, fj is the j th word of f and t(si|fj) is the lexical translation probability which indicates the probability of a word fj in the full name will be written as si in the output name.
Entity Context Model
例如:
C1: __wins NBA MVP.
C2: __is a researcher in machine learning
P(C1|Michael Jeffrey Jordan)应该很高,因为NBA球员迈克尔杰弗里乔丹经常出现在C1和P(C2|Michael Jeffrey Jordan)应该是非常低的,因为他很少出现在C2.
a context c containing n terms t1,t2…tn (term: a word; a named entity; a Wikipedia concept) ,the entity context model estimates the probability P(c|e) as
where Pg(t) is a general language model which is estimated using the whole Wikipedia data, and the optimal value of λ is set to 0.2
where Counte(t) is the frequency of occurrences of a term t in the contexts of the name mentions whose referent entity is e
The NIL Entity Problem
假设:“如果一个名字被提到是指一个特定的实体,那么这个名字被提到的概率是由特定实体的模型产生的,应该显著高于由一般语言模型产生的概率
1. add a pseudo entity, the NIL entity, into the knowledge base
2. the probability of a name mention is generated by the NIL entity is higher than all other entities in Knowledge base, we link the name mention to the NIL entity.
五.Experiments
论文《A Generative Entity-Mention Model for Linking Entities with Knowledge Base》的更多相关文章
- Entity Framework Model First下改变数据库脚本的生成方式
在Entity Framework Model First下, 一个非常常见的需求是改变数据库脚本的生成方式.这个应用场景是指,当用户在Designer上单击鼠标右键,然后选择Generate Dat ...
- Entity Framework的核心 – EDM(Entity Data Model) 一
http://blog.csdn.net/wangyongxia921/article/details/42061695 一.EnityFramework EnityFramework的全程是ADO. ...
- EF,ADO.NET Entity Data Model简要的笔记
1. 新建一个项目,添加一个ADO.NET Entity Data Model的文件,此文件会生成所有的数据对象模型,如果是用vs2012生的话,在.Designer.cs里会出现“// Defaul ...
- Create Entity Data Model
http://www.entityframeworktutorial.net/EntityFramework5/create-dbcontext-in-entity-framework5.aspx 官 ...
- 论文分享|《Universal Language Model Fine-tuning for Text Classificatio》
https://www.sohu.com/a/233269391_395209 本周我们要分享的论文是<Universal Language Model Fine-tuning for Text ...
- Entity Framework Tutorial Basics(5):Create Entity Data Model
Create Entity Data Model: Here, we are going to create an Entity Data Model (EDM) for SchoolDB datab ...
- ASP.NET-MVC中Entity和Model之间的关系
Entity 与 Model之间的关系图 ViewModel类是MVC中与浏览器交互的,Entity是后台与数据库交互的,这两者可以在MVC中的model类中转换 MVC基础框架 来自为知笔记(Wiz ...
- How to: Use the Entity Framework Model First in XAF 如何:在 XAF 中使用EF ModelFirst
This topic demonstrates how to use the Model First entity model and a DbContext entity container in ...
- 创建实体数据模型【Create Entity Data Model】(EF基础系列5)
现在我要来为上面一节末尾给出的数据库(SchoolDB)创建实体数据模型: SchoolDB数据库的脚本我已经写好了,如下: USE master GO IF EXISTS(SELECT * FROM ...
随机推荐
- 小白学 Python 爬虫(40):爬虫框架 Scrapy 入门基础(七)对接 Selenium 实战
人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...
- STM32F429的特点
STM32F429 内核 Crotex M4 最高主频 180MHZ FPU 有 DSP指令集 有 最大SRAM 256K 备份域SRAM 有 最大FLASH 2MB GPIO最高翻转速度 90MHZ ...
- dfs - 概率
C. Journey time limit per test 2 seconds memory limit per test 256 megabytes input standard input ou ...
- 切蛋糕(贪心 or 优先队列)
链接:https://www.nowcoder.com/acm/contest/80/D来源:牛客网 最可爱的applese生日啦,他准备了许多个质量不同的蛋糕,想请一些同学来参加他的派对为他庆生,为 ...
- 个人任务day5
今日计划: 写登录界面,学习如何使用js做出界面跳转的进度条动态显示. 昨日成果: 创建用户数据库.
- SpingMvc复杂参数传收总结
上一篇文章[javaWeb传收参数方式总结]总结了简单传收参数,这一篇讲如何传收复杂参数,比如Long[] .User(bean里面包含List).User[].List.List<Map< ...
- redis server can not continue
- 基于OpenCV的双目视觉匹配测距系统
刚读研究生的时候,自己导师研究的方向是双目视觉,于是让自己研究OpenCV,折腾了几个月,算法上没啥突破,不过工程上还是折腾出了一个能用的小玩意,基于OpenCV实现了相机的标定.双目视觉图片的矫正. ...
- python之set集合操作
set集合天生具有去重功能 1.创建集合,集合的value类型:string.tuple.frozenset.数字等不可变类型: s1 =set()#空集合 s2=set(") s3=set ...
- Java框架-MyBatis三剑客之MyBatis Generator(mybatis-generator MBG插件)详解
生成器设计思路: 连接数据库 -> 获取表结构 -> 生成文件 1 下载与安装 官网文档入口 最方便的 maven 插件使用方式 贴至pom 文件 2 新建配置文件 填充配置信息(官网示例 ...