A Generative Entity-Mention Model for Linking Entities with Knowledge Base

 

一.主要方法

提出了一种生成概率模型,叫做entity-mention model.

Explanation:

In our model, each name mention to be linked is modeled as a sample generated through a three-step generative story, and the entity knowledge is encoded in the distribution of entities in document P(e), the distribution of possible names of a specific entity P(s|e), and the distribution of possible contexts of a specific entity P(c|e). To find the referent entity of a name mention, our method combines the evidences from all the three distributions P(e), P(s|e) and P(c|e).

The P(e), P(s|e) and P(c|e) are respectively called the entity popularity model, the entity name model and the entity context model

二.相关介绍

建模

Given a set of name mentions M = {m1, m2, …, mk} contained in documents and a knowledge base KB containing a set of entities E = {e1, e2, …, en}, an entity linking system is a function s : M ® E which links these name mentions to their referent entities in KB.

Popularity Knowledge

实体的流行度知识告诉我们一个实体出现在文档中的可能性

Name Knowledge

名称知识告诉我们实体的可能名称,以及名称引用特定实体的可能性。

Context Knowledge

上下文知识告诉我们一个实体出现在特定上下文中的可能性。

三.The Generative Entity-Mention Model for Entity Linking

Explanation

  1. 首先,该模型根据P(e)中实体的分布情况,从给定知识库中选择提及名称的引用实体e。
  2. 其次,该模型根据被引用实体P(s|e)的可能名称的分布情况输出所述名称的名称s。
  3. 最后,模型根据被引用实体P(c|e)可能的上下文分布输出所提到的名称的上下文c。

model

The probability of a name mention m (its context is c and its name is s) referring to a specific entity e can be expressed as the following formula (here assume that s and c are independent):

Give a name mention m, to perform entity linking, we need to find the entity e which maximizes the probability P(e|m).

               

Candidate Selection

building a name-to-entity dictionary using the redirect links, disambiguation pages, anchor texts of Wikipedia, then the candidate entities of a name mention are selected by finding its name’s corresponding entry in the dictionary

四.Model Estimation

Entity Popularity Model

----》

where Count(e) is the count of the name mentions whose referent entity is e, and the |M| is the total name mention size.

Entity Name Model

比如,我们希望 P(Michael Jordan|Michael Jeffrey Jordan) 高,,P(MJ|Michael Jeffrey Jordan) 也高。 P(Michael I. Jordan|Michael Jeffrey Jordan) 应该是0.

因此,名称模型可以通过首先从数据集中收集所有(实体、名称)对来估计。

缺点:它不能正确地处理一个不可见的实体或一个不可见的名称。

Eg: “MJ”在Wikipedia指的并不是Michael Jeffrey Jordan, 这个the name model 将不能识别 “MJ” 就是Michael Jeffrey Jordan.

    ↓

1) It is retained (translated into itself);

2) It is translated into its acronym;

3) It is omitted(translated into the word NULL);

4) It is translated into another word (misspelling or alias).

wheree is a normalization factor, f is the full name of entity e, lf is the length of f, ls is the length of the name s, si the i th word of s, fj is the j th word of f and t(si|fj) is the lexical translation probability which indicates the probability of a word fj in the full name will be written as si in the output name.

Entity Context Model

例如:

C1: __wins NBA MVP.

C2: __is a researcher in machine learning

P(C1|Michael Jeffrey Jordan)应该很高,因为NBA球员迈克尔杰弗里乔丹经常出现在C1和P(C2|Michael Jeffrey Jordan)应该是非常低的,因为他很少出现在C2.

a context c containing n terms t1,t2…tn (term: a word; a named entity; a Wikipedia concept) ,the entity context model estimates the probability P(c|e) as

                  

where Pg(t) is a general language model which is estimated using the whole Wikipedia data, and the optimal value of λ is set to 0.2

                     

where Counte(t) is the frequency of occurrences of a term t in the contexts of the name mentions whose referent entity is e

The NIL Entity Problem

假设:“如果一个名字被提到是指一个特定的实体,那么这个名字被提到的概率是由特定实体的模型产生的,应该显著高于由一般语言模型产生的概率

1. add a pseudo entity, the NIL entity, into the knowledge base

2. the probability of a name mention is generated by the NIL entity is higher than all other entities in Knowledge base, we link the name mention to the NIL entity.

五.Experiments

论文《A Generative Entity-Mention Model for Linking Entities with Knowledge Base》的更多相关文章

  1. Entity Framework Model First下改变数据库脚本的生成方式

    在Entity Framework Model First下, 一个非常常见的需求是改变数据库脚本的生成方式.这个应用场景是指,当用户在Designer上单击鼠标右键,然后选择Generate Dat ...

  2. Entity Framework的核心 – EDM(Entity Data Model) 一

    http://blog.csdn.net/wangyongxia921/article/details/42061695 一.EnityFramework EnityFramework的全程是ADO. ...

  3. EF,ADO.NET Entity Data Model简要的笔记

    1. 新建一个项目,添加一个ADO.NET Entity Data Model的文件,此文件会生成所有的数据对象模型,如果是用vs2012生的话,在.Designer.cs里会出现“// Defaul ...

  4. Create Entity Data Model

    http://www.entityframeworktutorial.net/EntityFramework5/create-dbcontext-in-entity-framework5.aspx 官 ...

  5. 论文分享|《Universal Language Model Fine-tuning for Text Classificatio》

    https://www.sohu.com/a/233269391_395209 本周我们要分享的论文是<Universal Language Model Fine-tuning for Text ...

  6. Entity Framework Tutorial Basics(5):Create Entity Data Model

    Create Entity Data Model: Here, we are going to create an Entity Data Model (EDM) for SchoolDB datab ...

  7. ASP.NET-MVC中Entity和Model之间的关系

    Entity 与 Model之间的关系图 ViewModel类是MVC中与浏览器交互的,Entity是后台与数据库交互的,这两者可以在MVC中的model类中转换 MVC基础框架 来自为知笔记(Wiz ...

  8. How to: Use the Entity Framework Model First in XAF 如何:在 XAF 中使用EF ModelFirst

    This topic demonstrates how to use the Model First entity model and a DbContext entity container in ...

  9. 创建实体数据模型【Create Entity Data Model】(EF基础系列5)

    现在我要来为上面一节末尾给出的数据库(SchoolDB)创建实体数据模型: SchoolDB数据库的脚本我已经写好了,如下: USE master GO IF EXISTS(SELECT * FROM ...

随机推荐

  1. flask部署深度学习模型

    flask部署深度学习模型 作为著名Python web框架之一的Flask,具有简单轻量.灵活.扩展丰富且上手难度低的特点,因此成为了机器学习和深度学习模型上线跑定时任务,提供API的首选框架. 众 ...

  2. 2018 CCPC 网络赛

    The Power Cube is used as a stash of Exotic Power. There are n cities numbered 1,2,…,n where allowed ...

  3. 简单的 FFT 变形 - BZOJ 2194

    「BZOJ2194」快速傅立叶之二 2015年4月29日3,8300 Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 ...

  4. 测试必备之Java知识(一)—— Java基础

    Java基础 Java如何运行的? 开发的java源代码,通过javac编译成为平台无关的字节码文件(class),然后通过JVM的解释器将字节码解释成对应的机器码 “一次编译,到处运行”的理解 说的 ...

  5. 搞定SpringBoot多数据源(3):参数化变更源

    目录 1. 引言 2. 参数化变更源说明 2.1 解决思路 2.2 流程说明 3. 实现参数化变更源 3.1 改造动态数据源 3.1.1 动态数据源添加功能 3.1.2 动态数据源配置 3.2 添加数 ...

  6. 【WPF学习】第十章 WPF布局示例

    前几章用了相当大的篇幅研究有关WPF布局容器的复杂内容.在掌握了这些基础知识后,就可以研究几个完整的布局示例.通过研究完整的布局示例,可更好的理解各种WPF布局概念在实际窗口中的工作方式. 一.列设置 ...

  7. JPA_映射关联关系

    一:单项多对一的关联关系 例如:订单和客户 1.新创建订单类 package com.atguigu.jpa.helloworld; import javax.persistence.Column; ...

  8. Quartz.Net和队列应用demo

    using System; using System.Collections.Generic; using System.Threading; namespace ConsoleApplication ...

  9. CTF--HTTP服务--SQL注入GET参数

    开门见山 1. 扫描靶机ip,发现PCS 192.168.31.37 2. 用nmap扫描开放端口信息 3. 快速扫描全部信息 4. 探测敏感信息 5. 用浏览器打开用户登录页面 6. 使用OWASP ...

  10. Vertx使用EventBus发送接受自定义对象

    先看官方文档步骤: 需要一个编解码器,看源码: 可见内置了需要数据类型的实现,所以发送其他消息可以发送,但是如果发送自定义对象就需要自己实现编解码逻辑了 一 自定义编解码器 /** * 自定义对象编解 ...