A Generative Entity-Mention Model for Linking Entities with Knowledge Base

 

一.主要方法

提出了一种生成概率模型,叫做entity-mention model.

Explanation:

In our model, each name mention to be linked is modeled as a sample generated through a three-step generative story, and the entity knowledge is encoded in the distribution of entities in document P(e), the distribution of possible names of a specific entity P(s|e), and the distribution of possible contexts of a specific entity P(c|e). To find the referent entity of a name mention, our method combines the evidences from all the three distributions P(e), P(s|e) and P(c|e).

The P(e), P(s|e) and P(c|e) are respectively called the entity popularity model, the entity name model and the entity context model

二.相关介绍

建模

Given a set of name mentions M = {m1, m2, …, mk} contained in documents and a knowledge base KB containing a set of entities E = {e1, e2, …, en}, an entity linking system is a function s : M ® E which links these name mentions to their referent entities in KB.

Popularity Knowledge

实体的流行度知识告诉我们一个实体出现在文档中的可能性

Name Knowledge

名称知识告诉我们实体的可能名称,以及名称引用特定实体的可能性。

Context Knowledge

上下文知识告诉我们一个实体出现在特定上下文中的可能性。

三.The Generative Entity-Mention Model for Entity Linking

Explanation

  1. 首先,该模型根据P(e)中实体的分布情况,从给定知识库中选择提及名称的引用实体e。
  2. 其次,该模型根据被引用实体P(s|e)的可能名称的分布情况输出所述名称的名称s。
  3. 最后,模型根据被引用实体P(c|e)可能的上下文分布输出所提到的名称的上下文c。

model

The probability of a name mention m (its context is c and its name is s) referring to a specific entity e can be expressed as the following formula (here assume that s and c are independent):

Give a name mention m, to perform entity linking, we need to find the entity e which maximizes the probability P(e|m).

               

Candidate Selection

building a name-to-entity dictionary using the redirect links, disambiguation pages, anchor texts of Wikipedia, then the candidate entities of a name mention are selected by finding its name’s corresponding entry in the dictionary

四.Model Estimation

Entity Popularity Model

----》

where Count(e) is the count of the name mentions whose referent entity is e, and the |M| is the total name mention size.

Entity Name Model

比如,我们希望 P(Michael Jordan|Michael Jeffrey Jordan) 高,,P(MJ|Michael Jeffrey Jordan) 也高。 P(Michael I. Jordan|Michael Jeffrey Jordan) 应该是0.

因此,名称模型可以通过首先从数据集中收集所有(实体、名称)对来估计。

缺点:它不能正确地处理一个不可见的实体或一个不可见的名称。

Eg: “MJ”在Wikipedia指的并不是Michael Jeffrey Jordan, 这个the name model 将不能识别 “MJ” 就是Michael Jeffrey Jordan.

    ↓

1) It is retained (translated into itself);

2) It is translated into its acronym;

3) It is omitted(translated into the word NULL);

4) It is translated into another word (misspelling or alias).

wheree is a normalization factor, f is the full name of entity e, lf is the length of f, ls is the length of the name s, si the i th word of s, fj is the j th word of f and t(si|fj) is the lexical translation probability which indicates the probability of a word fj in the full name will be written as si in the output name.

Entity Context Model

例如:

C1: __wins NBA MVP.

C2: __is a researcher in machine learning

P(C1|Michael Jeffrey Jordan)应该很高,因为NBA球员迈克尔杰弗里乔丹经常出现在C1和P(C2|Michael Jeffrey Jordan)应该是非常低的,因为他很少出现在C2.

a context c containing n terms t1,t2…tn (term: a word; a named entity; a Wikipedia concept) ,the entity context model estimates the probability P(c|e) as

                  

where Pg(t) is a general language model which is estimated using the whole Wikipedia data, and the optimal value of λ is set to 0.2

                     

where Counte(t) is the frequency of occurrences of a term t in the contexts of the name mentions whose referent entity is e

The NIL Entity Problem

假设:“如果一个名字被提到是指一个特定的实体,那么这个名字被提到的概率是由特定实体的模型产生的,应该显著高于由一般语言模型产生的概率

1. add a pseudo entity, the NIL entity, into the knowledge base

2. the probability of a name mention is generated by the NIL entity is higher than all other entities in Knowledge base, we link the name mention to the NIL entity.

五.Experiments

论文《A Generative Entity-Mention Model for Linking Entities with Knowledge Base》的更多相关文章

  1. Entity Framework Model First下改变数据库脚本的生成方式

    在Entity Framework Model First下, 一个非常常见的需求是改变数据库脚本的生成方式.这个应用场景是指,当用户在Designer上单击鼠标右键,然后选择Generate Dat ...

  2. Entity Framework的核心 – EDM(Entity Data Model) 一

    http://blog.csdn.net/wangyongxia921/article/details/42061695 一.EnityFramework EnityFramework的全程是ADO. ...

  3. EF,ADO.NET Entity Data Model简要的笔记

    1. 新建一个项目,添加一个ADO.NET Entity Data Model的文件,此文件会生成所有的数据对象模型,如果是用vs2012生的话,在.Designer.cs里会出现“// Defaul ...

  4. Create Entity Data Model

    http://www.entityframeworktutorial.net/EntityFramework5/create-dbcontext-in-entity-framework5.aspx 官 ...

  5. 论文分享|《Universal Language Model Fine-tuning for Text Classificatio》

    https://www.sohu.com/a/233269391_395209 本周我们要分享的论文是<Universal Language Model Fine-tuning for Text ...

  6. Entity Framework Tutorial Basics(5):Create Entity Data Model

    Create Entity Data Model: Here, we are going to create an Entity Data Model (EDM) for SchoolDB datab ...

  7. ASP.NET-MVC中Entity和Model之间的关系

    Entity 与 Model之间的关系图 ViewModel类是MVC中与浏览器交互的,Entity是后台与数据库交互的,这两者可以在MVC中的model类中转换 MVC基础框架 来自为知笔记(Wiz ...

  8. How to: Use the Entity Framework Model First in XAF 如何:在 XAF 中使用EF ModelFirst

    This topic demonstrates how to use the Model First entity model and a DbContext entity container in ...

  9. 创建实体数据模型【Create Entity Data Model】(EF基础系列5)

    现在我要来为上面一节末尾给出的数据库(SchoolDB)创建实体数据模型: SchoolDB数据库的脚本我已经写好了,如下: USE master GO IF EXISTS(SELECT * FROM ...

随机推荐

  1. 《【面试突击】— Redis篇》-- Redis的线程模型了解吗?为啥单线程效率还这么高?

    能坚持别人不能坚持的,才能拥有别人未曾拥有的.关注编程大道公众号,让我们一同坚持心中所想,一起成长!! <[面试突击]— Redis篇>-- Redis的线程模型了解吗?为啥单线程效率还这 ...

  2. 为什么说ArrayList是线程不安全的?

    一.概述 对于ArrayList,相信大家并不陌生.这个类是我们平时接触得最多的一个列表集合类. 面试时相信面试官首先就会问到关于它的知识.一个经常被问到的问题就是:ArrayList是否是线程安全的 ...

  3. 安装mysql8.0.17指南

    1.首先,下载社区版mysql(下载地址https://dev.mysql.com/downloads/mysql/) 2.下载之后,将文件解压到自己想要安装的目录(如,本人将解压文件放置g://my ...

  4. 【大道至简】NetCore3.1快速开发框架一:搭建框架

    这一章,我们直接创建NetCore3.1的项目 主要分为1个Api项目,和几个类库 解释: 项目——FytSoa.Api:提供前端接口的Api项目 类库——FytSoa.Core:包含了数据库操作类和 ...

  5. pyhton 线程锁

    问题:已经有了全局解释器锁为什么还需要锁? 答:全局解释器锁是在Cpython解释器下,同一时刻,多个线程只能有一个线程被cpu调度 它是在线程和cpu之间加锁,线程和cpu之间有传递时间,即使有GI ...

  6. 客户端TNSPING通 连接出现ORA-12514错误

    ORA-12514: TNS: 监听程序当前无法识别连接描述符中请求的服务,这是一个经常遇到的问题,可以按照以下步骤一步步解决 1.使用tnsping检测 tnsping可判断出以下两点(1)判断网络 ...

  7. 用路由系统生成输出URL 在视图中生成输出URL 高级路由特性 精通ASP-NET-MVC-5-弗瑞曼

    Using the Routing System to Generate an Outgoing URL 结果呢:<a href="/Home/CustomVariable" ...

  8. 创建dynamics CRM client-side (十四) - Web API

    Xrm.WebApi 是我们做前端开发不可不缺少的内容. Xrm.WebApi 分为online和offline online: 可以实现和服务器的CRUD交互 offline: 多用于mobile ...

  9. 使用requests模块的网络编程

    python操作网络,也就是打开一个网站,或者请求一个http接口,本篇是介绍使用request模块的使用方式. 在使用requests模块之前需要先安装,在cmd中输入:pip install re ...

  10. httpClient爬虫

    package httpClient.client; import java.io.File; import java.io.IOException; import java.io.InputStre ...