A Generative Entity-Mention Model for Linking Entities with Knowledge Base

 

一.主要方法

提出了一种生成概率模型,叫做entity-mention model.

Explanation:

In our model, each name mention to be linked is modeled as a sample generated through a three-step generative story, and the entity knowledge is encoded in the distribution of entities in document P(e), the distribution of possible names of a specific entity P(s|e), and the distribution of possible contexts of a specific entity P(c|e). To find the referent entity of a name mention, our method combines the evidences from all the three distributions P(e), P(s|e) and P(c|e).

The P(e), P(s|e) and P(c|e) are respectively called the entity popularity model, the entity name model and the entity context model

二.相关介绍

建模

Given a set of name mentions M = {m1, m2, …, mk} contained in documents and a knowledge base KB containing a set of entities E = {e1, e2, …, en}, an entity linking system is a function s : M ® E which links these name mentions to their referent entities in KB.

Popularity Knowledge

实体的流行度知识告诉我们一个实体出现在文档中的可能性

Name Knowledge

名称知识告诉我们实体的可能名称,以及名称引用特定实体的可能性。

Context Knowledge

上下文知识告诉我们一个实体出现在特定上下文中的可能性。

三.The Generative Entity-Mention Model for Entity Linking

Explanation

  1. 首先,该模型根据P(e)中实体的分布情况,从给定知识库中选择提及名称的引用实体e。
  2. 其次,该模型根据被引用实体P(s|e)的可能名称的分布情况输出所述名称的名称s。
  3. 最后,模型根据被引用实体P(c|e)可能的上下文分布输出所提到的名称的上下文c。

model

The probability of a name mention m (its context is c and its name is s) referring to a specific entity e can be expressed as the following formula (here assume that s and c are independent):

Give a name mention m, to perform entity linking, we need to find the entity e which maximizes the probability P(e|m).

               

Candidate Selection

building a name-to-entity dictionary using the redirect links, disambiguation pages, anchor texts of Wikipedia, then the candidate entities of a name mention are selected by finding its name’s corresponding entry in the dictionary

四.Model Estimation

Entity Popularity Model

----》

where Count(e) is the count of the name mentions whose referent entity is e, and the |M| is the total name mention size.

Entity Name Model

比如,我们希望 P(Michael Jordan|Michael Jeffrey Jordan) 高,,P(MJ|Michael Jeffrey Jordan) 也高。 P(Michael I. Jordan|Michael Jeffrey Jordan) 应该是0.

因此,名称模型可以通过首先从数据集中收集所有(实体、名称)对来估计。

缺点:它不能正确地处理一个不可见的实体或一个不可见的名称。

Eg: “MJ”在Wikipedia指的并不是Michael Jeffrey Jordan, 这个the name model 将不能识别 “MJ” 就是Michael Jeffrey Jordan.

    ↓

1) It is retained (translated into itself);

2) It is translated into its acronym;

3) It is omitted(translated into the word NULL);

4) It is translated into another word (misspelling or alias).

wheree is a normalization factor, f is the full name of entity e, lf is the length of f, ls is the length of the name s, si the i th word of s, fj is the j th word of f and t(si|fj) is the lexical translation probability which indicates the probability of a word fj in the full name will be written as si in the output name.

Entity Context Model

例如:

C1: __wins NBA MVP.

C2: __is a researcher in machine learning

P(C1|Michael Jeffrey Jordan)应该很高,因为NBA球员迈克尔杰弗里乔丹经常出现在C1和P(C2|Michael Jeffrey Jordan)应该是非常低的,因为他很少出现在C2.

a context c containing n terms t1,t2…tn (term: a word; a named entity; a Wikipedia concept) ,the entity context model estimates the probability P(c|e) as

                  

where Pg(t) is a general language model which is estimated using the whole Wikipedia data, and the optimal value of λ is set to 0.2

                     

where Counte(t) is the frequency of occurrences of a term t in the contexts of the name mentions whose referent entity is e

The NIL Entity Problem

假设:“如果一个名字被提到是指一个特定的实体,那么这个名字被提到的概率是由特定实体的模型产生的,应该显著高于由一般语言模型产生的概率

1. add a pseudo entity, the NIL entity, into the knowledge base

2. the probability of a name mention is generated by the NIL entity is higher than all other entities in Knowledge base, we link the name mention to the NIL entity.

五.Experiments

论文《A Generative Entity-Mention Model for Linking Entities with Knowledge Base》的更多相关文章

  1. Entity Framework Model First下改变数据库脚本的生成方式

    在Entity Framework Model First下, 一个非常常见的需求是改变数据库脚本的生成方式.这个应用场景是指,当用户在Designer上单击鼠标右键,然后选择Generate Dat ...

  2. Entity Framework的核心 – EDM(Entity Data Model) 一

    http://blog.csdn.net/wangyongxia921/article/details/42061695 一.EnityFramework EnityFramework的全程是ADO. ...

  3. EF,ADO.NET Entity Data Model简要的笔记

    1. 新建一个项目,添加一个ADO.NET Entity Data Model的文件,此文件会生成所有的数据对象模型,如果是用vs2012生的话,在.Designer.cs里会出现“// Defaul ...

  4. Create Entity Data Model

    http://www.entityframeworktutorial.net/EntityFramework5/create-dbcontext-in-entity-framework5.aspx 官 ...

  5. 论文分享|《Universal Language Model Fine-tuning for Text Classificatio》

    https://www.sohu.com/a/233269391_395209 本周我们要分享的论文是<Universal Language Model Fine-tuning for Text ...

  6. Entity Framework Tutorial Basics(5):Create Entity Data Model

    Create Entity Data Model: Here, we are going to create an Entity Data Model (EDM) for SchoolDB datab ...

  7. ASP.NET-MVC中Entity和Model之间的关系

    Entity 与 Model之间的关系图 ViewModel类是MVC中与浏览器交互的,Entity是后台与数据库交互的,这两者可以在MVC中的model类中转换 MVC基础框架 来自为知笔记(Wiz ...

  8. How to: Use the Entity Framework Model First in XAF 如何:在 XAF 中使用EF ModelFirst

    This topic demonstrates how to use the Model First entity model and a DbContext entity container in ...

  9. 创建实体数据模型【Create Entity Data Model】(EF基础系列5)

    现在我要来为上面一节末尾给出的数据库(SchoolDB)创建实体数据模型: SchoolDB数据库的脚本我已经写好了,如下: USE master GO IF EXISTS(SELECT * FROM ...

随机推荐

  1. 小白学 Python 爬虫(40):爬虫框架 Scrapy 入门基础(七)对接 Selenium 实战

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...

  2. STM32F429的特点

    STM32F429 内核 Crotex M4 最高主频 180MHZ FPU 有 DSP指令集 有 最大SRAM 256K 备份域SRAM 有 最大FLASH 2MB GPIO最高翻转速度 90MHZ ...

  3. dfs - 概率

    C. Journey time limit per test 2 seconds memory limit per test 256 megabytes input standard input ou ...

  4. 切蛋糕(贪心 or 优先队列)

    链接:https://www.nowcoder.com/acm/contest/80/D来源:牛客网 最可爱的applese生日啦,他准备了许多个质量不同的蛋糕,想请一些同学来参加他的派对为他庆生,为 ...

  5. 个人任务day5

    今日计划: 写登录界面,学习如何使用js做出界面跳转的进度条动态显示. 昨日成果: 创建用户数据库.

  6. SpingMvc复杂参数传收总结

    上一篇文章[javaWeb传收参数方式总结]总结了简单传收参数,这一篇讲如何传收复杂参数,比如Long[] .User(bean里面包含List).User[].List.List<Map< ...

  7. redis server can not continue

  8. 基于OpenCV的双目视觉匹配测距系统

    刚读研究生的时候,自己导师研究的方向是双目视觉,于是让自己研究OpenCV,折腾了几个月,算法上没啥突破,不过工程上还是折腾出了一个能用的小玩意,基于OpenCV实现了相机的标定.双目视觉图片的矫正. ...

  9. python之set集合操作

    set集合天生具有去重功能 1.创建集合,集合的value类型:string.tuple.frozenset.数字等不可变类型: s1 =set()#空集合 s2=set(") s3=set ...

  10. Java框架-MyBatis三剑客之MyBatis Generator(mybatis-generator MBG插件)详解

    生成器设计思路: 连接数据库 -> 获取表结构 -> 生成文件 1 下载与安装 官网文档入口 最方便的 maven 插件使用方式 贴至pom 文件 2 新建配置文件 填充配置信息(官网示例 ...