洛谷 P4495 [HAOI2018]奇怪的背包 解题报告
P4495 [HAOI2018]奇怪的背包
题目描述
小\(C\)非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数\(P\),当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对\(P\)取模后的结果. 现在小\(C\)有\(n\)种体积不同的物品,第\(i\)种占用体积为\(V_i\),每种物品都有无限个. 他会进行\(q\)次询问,每次询问给出重量\(w_i\),你需要回答有多少种放入物品的方案,能将一个初始为空的背包的重量变为\(w_i\).注意,两种方案被认为是不同的, 当且仅当放入物品的种类不同,而与每种物品放入的个数无关.不难发现总的方案数为\(2^n\). 由于答案可能很大,你只需要输出答案对\(1e9+7\)取模的结果.
输入输出格式
输入格式
第一行三个整数\(n,q,P\),含义见问题描述. 接下来一行\(n\)个整数表示\(V_i\). 接下来一行\(q\)个整数表示\(w_i\).
输出格式:
输出\(q\)行,每行一个整数表示答案.
说明
对于所有数据,有\(1\le n,q\le 10^6,3 \le P \le 10^9,0 < V_i,w_i < P\),保证\(V_i\)两两不同。
测试点标号 | \(n\) | \(q\) | \(p\) |
---|---|---|---|
\(1\) | \(=1\) | \(\le 10^3\) | \(\le 10^9\) |
\(2\) | \(\le 10\) | \(\le 10^3\) | \(\le 10\) |
\(3\) | \(\le 10\) | \(\le 10^3\) | \(\le 250\) |
\(4\) | \(\le 10\) | \(\le 10^3\) | \(\le 250\) |
\(5\) | \(\le 10^3\) | \(\le 10^3\) | \(\le 10^4\) |
\(6\) | \(\le 10^3\) | \(\le 10^3\) | \(\le 10^4\) |
\(7\) | \(\le 10^3\) | \(\le 10^3\) | \(=998244353\) |
\(8\) | \(\le 10^3\) | \(\le 10^3\) | \(\le 10^9\) |
\(9\) | \(\le 10^6\) | \(\le 10^6\) | \(\le 10^9\) |
\(10\) | \(\le 10^6\) | \(\le 10^6\) | \(\le 10^9\) |
是什么限制了我做题的想象力。。
我们要求
\]
有多少个解,换成方程,即
\]
有裴蜀定理可以猜到,有解的要求是\(gcd(x_1,x_2,\dots,x_n,p)|w_i\)
于是我们可以做\(DP\),令\(dp_{i,j}\)表示前\(i\)个数选择的数的\(gcd\)和\(p\)做\(gcd\)后的结果为\(j\)
发现这样的状态是\(O(nd(p))\)的,\(d(p)\)表示\(p\)的约数个数
我们可以把\(V_i\)与\(p\)的\(gcd\)相同的放在一起做,这样状态就优化到了\(O(d^2(p))\)了
转移的时候要求\(gcd\),那么\(dp\)的总复杂度就是\(O(d^2(p)\log p)\)的
最后对每个\(w_i\)统计答案是\(\sum_{i|w_i}dp_{n,i}\),不可以暴力统计,注意到是可以实现预处理的。
总复杂度\(O(\sqrt p+d^2(p)\log p+n\log p+q)\)的
Code:
#include <cstdio>
#include <algorithm>
#define ll long long
const int N=1e6+10;
const int M=2010;
const ll mod=1e9+7;
int n_,n,q,p,v[N],siz[N],cnt;
ll dp[M][M],f[M],d[M],po[N];
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int Find(int x){return std::lower_bound(d+1,d+1+cnt,x)-d;}
int main()
{
scanf("%d%d%d",&n_,&q,&p);
po[0]=1;
for(int i=1;i<=n_;i++)
{
scanf("%d",v+i);
v[i]=gcd(v[i],p);
po[i]=(po[i-1]<<1ll)%mod;
}
std::sort(v+1,v+1+n_);
for(int i=1;i<=n_;i++)
{
if(v[i]==v[n])
++siz[n];
else
v[++n]=v[i],siz[n]=1;
}
for(int i=1;i*i<=p;i++)
if(p%i==0)
d[++cnt]=p/i,d[++cnt]=i;
std::sort(d+1,d+1+cnt);
cnt=std::unique(d+1,d+1+cnt)-d-1;
for(int i=0;i<n;i++)
{
for(int j=1;j<=cnt;j++)
{
int pos=Find(gcd(v[i+1],d[j]));
(dp[i+1][pos]+=dp[i][j]*(po[siz[i+1]]-1)%mod)%=mod;
(dp[i+1][j]+=dp[i][j])%=mod;
}
(dp[i+1][Find(gcd(v[i+1],p))]+=po[siz[i+1]]-1)%=mod;
}
for(int i=1;i<=cnt;i++)
for(int j=1;j<=i;j++)
if(d[i]%d[j]==0)
(f[i]+=dp[n][j])%=mod;
for(int w,i=1;i<=q;i++)
{
scanf("%d",&w);
printf("%lld\n",f[Find(gcd(w,p))]);
}
return 0;
}
2018.10.31
洛谷 P4495 [HAOI2018]奇怪的背包 解题报告的更多相关文章
- 洛谷P4495 [HAOI2018]奇怪的背包(数论)
题面 传送门 题解 好神仙的思路啊--orzyyb 因为不限次数,所以一个体积为\(V_i\)的物品可以表示出所有重量为\(\gcd(V_i,P)\)的倍数的物品,而所有物品的总和就是这些所有的\(\ ...
- 洛谷 P4389 付公主的背包 解题报告
P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\ ...
- 洛谷 P2323 [HNOI2006]公路修建问题 解题报告
P2323 [HNOI2006]公路修建问题 题目描述 输入输出格式 输入格式: 在实际评测时,将只会有m-1行公路 输出格式: 思路: 二分答案 然后把每条能加的大边都加上,然后加小边 但在洛谷的题 ...
- 洛谷 P1852 [国家集训队]跳跳棋 解题报告
P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...
- 洛谷 P1356 数列的整数性 解题报告
P1356 数列的整数性 题目描述 对于任意一个整数数列,我们可以在每两个整数中间任意放一个符号'+'或'-',这样就可以构成一个表达式,也就可以计算出表达式的值.比如,现在有一个整数数列:17,5, ...
- 洛谷 P2114 [NOI2014]起床困难综合症 解题报告
P2114 [NOI2014]起床困难综合症 题目描述 21世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm一直坚持与起床困难综合症作 ...
- 洛谷 P3299 [SDOI2013]保护出题人 解题报告
P3299 [SDOI2013]保护出题人 题目描述 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企 ...
- 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告
P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...
- 洛谷 P2463 [SDOI2008]Sandy的卡片 解题报告
P2463 [SDOI2008]Sandy的卡片 题意 给\(n(\le 1000)\)串,定义两个串相等为"长度相同,且一个串每个数加某个数与另一个串完全相同",求所有串的最长公 ...
随机推荐
- android 学习六 构建用户界面和使用控件
1.常用Android控件最终都会继承自View类 2.ViewGroup是一些布局类列表的基类,包括View和ViewGroup 3.构造界面的三种方法 a.完全使用代码(太灵活,而不好维护) ...
- WEB页面常用基本控件测试用例
一.树控件的测试外观操作 1)项目中的所有树是否风格一致 2)树结构的默认状态是怎样的.比如默认树是否是展开,是展开几级? 是否有默认的焦点? 默认值是什么?展开的节点图标和颜色? 2.执行操作 1 ...
- Java应用基础微专业-进阶篇
第1章--使用对象 1.1 字符类型 char c = 65; // char --> int char c = '\u0041'; // \u: unicode + (Hex 41--> ...
- Python类对象
python类对象 python类对象支持两种操作:属性引用和实例化. 属性引用 使用 Python 中所有属性引用所使用的标准语法: obj.name. 有效的属性名称是类对象被创建时存在于类命名空 ...
- TW实习日记:第26天
这周组长休年假去了,并且之前主要负责的项目也已经上线了,可以说没那么忙了,手头就一个协助别的组做的移动端项目.可是这个项目特别坑,由于网端是9年前的项目,导致后台的接口有非常多的问题,并且入参多得令人 ...
- JVM学习--jvm监控和故障处理工具
java虚拟机性能监控常用命令 Sun JDK监控和故障处理命令有jps.jstat.jinfo.jmap.jhat.jstack . 1.jps jps:JVM Process Status Too ...
- 166. Nth to Last Node in List
Description Find the nth to last element of a singly linked list. The minimum number of nodes in lis ...
- python3爬虫-快速入门-爬取图片和标题
直接上代码,先来个爬取豆瓣图片的,大致思路就是发送请求-得到响应数据-储存数据,原理的话可以先看看这个 https://www.cnblogs.com/sss4/p/7809821.html impo ...
- 【转】Haml 这货是啥? 附参考
Haml是一种用来描述任何XHTML web document的标记语言,它是干净,简单的.而且也不用内嵌代码.Haml的职能就是替代那些内嵌代码的page page templating syste ...
- 【RL系列】Multi-Armed Bandit笔记补充(一)
在此之前,请先阅读上一篇文章:[RL系列]Multi-Armed Bandit笔记 本篇的主题就如标题所示,只是上一篇文章的补充,主要关注两道来自于Reinforcement Learning: An ...