CF1137F Matches Are Not a Child's Play 题解
以最后被删去的点为根,这样子不会存在从父亲然后删掉某个点,儿子的删除顺序一定比父亲前。
记每个点子树中的最大值为 \(f_x\),那么一个点的排名,首先就需要加上 \(<f_x\) 的所有值,记对应 \(f_x\) 的点为 \(y\),那么 \(y\) 一定会一路上来删掉 \(x\)。
所以一个点排名就是 \(<f_x\) 的所有值,再加上 \(x,y\) 之间的距离。
考虑如何维护修改,设上一个根是 \(rt\),新根是 \(x\),那么等价于一次换根,需要将 \(x\) 到 \(rt\) 这条路径 cover 上 \(p_{rt}\),同时改掉 \(x\) 的值。
可以使用 ODT + 树剖维护。
Code
const int N=2e5+5;
int n,m;
vi G[N];
int dep[N],siz[N],top[N],son[N],dfn[N],fat[N],dfc,p[N*2],rp[N*2];
void dfs1(int u,int fa) {
dep[u]=dep[fa]+1,siz[u]=1,fat[u]=fa;
for(int v:G[u]) if(v!=fa) {
dfs1(v,u),siz[u]+=siz[v];
p[u]=max(p[u],p[v]);
if(siz[son[u]]<siz[v]) son[u]=v;
}
}
void dfs2(int u,int tp,int fa) {
top[u]=tp,dfn[u]=++dfc;
if(son[u]==0) return;
dfs2(son[u],tp,u);
for(int v:G[u]) if(v!=fa&&v!=son[u]) dfs2(v,v,u);
}
int bit[2*N];
void add(int x,int v) { for(;x<=n+m;x+=(x&-x)) bit[x]+=v; }
int ask(int x) { int ret=0; for(;x;x-=(x&-x)) ret+=bit[x]; return ret; }
struct node {
int l,r,v;
node() {}
node(int L,int R,int V) { l=L,r=R,v=V; }
bool operator < (const node &a) const { return l<a.l; }
};
set<node> odt;
auto spilt(int p) {
auto it=odt.lower_bound(node(p,-1,0));
if(it!=odt.end()&&it->l==p) return it;
--it;
int l=it->l,r=it->r,v=it->v;
odt.erase(it),odt.insert(node(l,p-1,v));
return odt.insert(node(p,r,v)).fi;
}
void cover(int l,int r,int v) {
auto itr=spilt(r+1),itl=spilt(l);
for(auto it=itl;it!=itr;it=odt.erase(it)) add(it->v,-((it->r)-(it->l)+1));
add(v,r-l+1),odt.insert(node(l,r,v));
}
void update(int u,int v,int w) {
while(top[u]!=top[v]) {
if(dep[top[u]]<dep[top[v]]) swap(u,v);
cover(dfn[top[u]],dfn[u],w),u=fat[top[u]];
}
if(dep[u]>dep[v]) swap(u,v);
cover(dfn[u],dfn[v],w);
}
int lca(int u,int v) {
while(top[u]!=top[v]) {
if(dep[top[u]]<dep[top[v]]) swap(u,v);
u=fat[top[u]];
}
return dep[u]<dep[v]?u:v;
}
int dist(int u,int v) { return dep[u]+dep[v]-2*dep[lca(u,v)]+1; }
int query(int x) {
auto pos=odt.upper_bound(node(dfn[x],-1,0));
int val=prev(pos)->v;
return ask(val-1)+dist(x,rp[val]);
}
int main() {
n=read(),m=read();
FOR(i,1,n-1) {
int x=read(),y=read();
G[x].pb(y),G[y].pb(x);
}
FOR(i,1,n) p[i]=rp[i]=i;
int rt=n,mx=n;
dfs1(n,0),dfs2(n,n,0);
FOR(i,1,n) add(p[i],1),odt.insert(node(dfn[i],dfn[i],p[i]));
FOR(i,1,m) {
string ch; cin>>ch;
int u=read();
if(ch[0]=='1') {
if(u!=rt) update(rt,u,mx);
++mx,cover(dfn[u],dfn[u],mx),rp[mx]=rt=u;
}
else if(ch[0]=='2') printf("%d\n",query(u));
else { int v=read(); printf("%d\n",query(u)>query(v)?v:u);}
}
}
CF1137F Matches Are Not a Child's Play 题解的更多相关文章
- CF1137F Matches Are Not a Child's Play(LCT思维题)
题目 CF1137F 很有意思的题目 做法 直接考虑带修改的做法,上一次最大值为u,这次修改v,则最大值为v了 我们发现:\(u-v\)这条链会留到最后,序列里的其他元素相对位置不变,这条链会\(u\ ...
- CF1137F Matches Are Not a Child's Play(树链剖分)
题面 我们定义一棵树的删除序列为:每一次将树中编号最小的叶子删掉,将该节点编号加入到当前序列的最末端,最后只剩下一个节点时将该节点的编号加入到结尾. 例如对于上图中的树,它的删除序列为:2 4 3 1 ...
- 【树链剖分 ODT】cf1137F. Matches Are Not a Child's Play
孔爷的杂题系列:LCT清新题/ODT模板题 题目大意 定义一颗无根树的燃烧序列为:每次选取编号最小的叶子节点形成的序列. 要求支持操作:查询一个点$u$在燃烧序列中的排名:将一个点的编号变成最大 $n ...
- CF1137F Matches Are Not a Child's Play
我们定义一棵树的删除序列为:每一次将树中编号最小的叶子删掉,将该节点编号加入到当前序列的最末端,最后只剩下一个节点时将该节点的编号加入到结尾.现在给出一棵n个节点的树,有m次操作: up v:将v号节 ...
- [cf1137F]Matches Are Not a Child's Pla
显然compare操作可以通过两次when操作实现,以下仅考虑前两种操作 为了方便,将优先级最高的节点作为根,显然根最后才会被删除 接下来,不断找到剩下的节点中(包括根)优先级最高的节点,将其到其所在 ...
- [Codeforces1137F]Matches Are Not a Child's Play——LCT+树状数组
题目链接: [Codeforces1137F]Matches Are Not a Child's Play 题目大意: 我们定义一棵树的删除序列为:每一次将树中编号最小的叶子删掉,将该节点编号加入到当 ...
- Codeforces 1137F Matches Are Not a Child's Play [LCT]
Codeforces 很好,通过这题对LCT的理解又深了一层. 思路 (有人说这是套路题,然而我没有见过/kk) 首先发现,删点可以从根那里往下删,非常难受,所以把权值最大的点提为根. 然后考虑\(x ...
- Codeforces 1137F - Matches Are Not a Child's Play(LCT)
Codeforces 题面传送门 & 洛谷题面传送门 考虑将一个点 \(x\) 的编号变为当前所有点编号最大值 \(+1\) 会对每个点的删除时间产生怎么样的影响.由于编号最大的点肯定是最后一 ...
- The Child and Zoo 题解
题目描述 Of course our child likes walking in a zoo. The zoo has n areas, that are numbered from 1 to n. ...
- LCT[Link-Cut-Tree学习笔记]
部分摘抄于 FlashHu candy99 所以文章篇幅较长 请有足够的耐心(不是 其实不用学好splay再学LCT的-/kk (至少现在我平衡树靠fhq) 如果学splay的话- 也许我菜吧-LCT ...
随机推荐
- 基于.NetCore开发博客项目 StarBlog - (25) 图片接口与文件上传
前言 上传文件的接口设计有两种风格,一种是整个项目只设置一个接口用来上传,然后其他需要用到文件的地方,都只存一个引用ID:另一种是每个需要文件的地方单独管理各自的文件.这俩各有优劣吧,本项目中选择的是 ...
- 重学c#系列—— 反射的基本理解[三十三]
前言 在上一章中介绍了什么是反射: https://www.cnblogs.com/aoximin/p/16440966.html 正文 上一节讲述反射的基本原理和为什么要用反射,还用反射的优缺点这些 ...
- 【转载】C#使用Dotfuscator混淆代码以及加密
C#编写的代码如果不进行一定程度的混淆和加密,那么是非常容易被反编译进行破解的,特别是对于一些商业用途的C#软件来说,因为盯着的人多,更是极易被攻破.使用Dotfuscator可以实现混淆代码.变量名 ...
- 使用APICloud AVM多端组件快速实现app中的搜索功能
很多 APP 中都有搜索功能的需求,本文介绍怎么使用 avm 多端组件快速实现搜索功能. 在 APICloud 模块库搜索 animate-UISearchBar,添加到项目.多端组件需要下载源码,引 ...
- Fast RCNN论文阅读笔记
1.Introduction 1.1 RCNN 和SPPnet RCNN有几个显著的问题:1.训练的时候是多阶段的训练,分别分三个阶段训练卷积层.SVM.边框回归矩阵.2.训练很耗时.3.目标定位非常 ...
- Visual Studio2017快速收缩/扩展代码块
首先要设置伸缩函数的同时也伸缩region块: 快捷键 Ctrl+M+O 收缩所有方法 Ctrl+M+L 展开所有方法
- Strapi入门记--01创建项目,账户,测试表,测试接口
Strapi 是什么 中文文档地址 Strapi 是一个开源的无头 CMS,开发人员可以自由选择他们喜欢的工具和框架,并允许编辑使用他们的应用程序的管理面板来管理和分发他们的内容.基于一个插件系统,S ...
- flutter 2.X报错 Bad state: Insecure HTTP is not allowed by platform:
flutter2.x开发遇到的问题 Bad state: Insecure HTTP is not allowed by platform: 翻译过来就是:错误状态:平台不允许不安全的HTTP: 产生 ...
- Node.js+Koa2+TypeScript技术概览
最近几年一直使用Node.js作为后端服务平台,通过Koa2框架中间件快速搭建Web服务,但是使用JavaScript开发大型后端服务时会使程序变得难以维护,继而使用TypeScript语言开发,使编 ...
- 【总结笔记】全志平台 Linux ASOC 框架浅析
ASOC 各部分框图示意 Platform 一般由 SOC 芯片原厂负责编写,主要涉及到 SOC 内部数字音频接口DAI(I2S)和 DMA 的寄存器配置. Codec 一般由硬件方案的驱动工程师或者 ...