设 $X$ 是线性空间, $\phi_1,\cdots,\phi_n,\phi$ 是 $X$ 上的线性泛函, 试证: $$\bex \phi\in \span\sed{\phi_1,\cdots,\phi_n}\ \lra \cap_{k=1}^n \ker \phi_i\subset \ker \phi. \eex$$

证明: $\ra$: $$\beex \bea &\quad \phi\in \span\sed{\phi_1,\cdots,\phi_n}\\ &\ra \phi=\sum c_k\phi_k\\ &\ra \phi(x)=\sum c_k\phi_k(x)=0,\quad \forall\ x\in\cap_{k=1}^n\ker \phi_k. \eea \eeex$$ $\la$: 用反证法. 若 $\phi\not\in \span\sed{\phi_1,\cdots,\phi_n}$, 则由 Hahn-Banach 定理, 存在 $x\in X=X^{**}$, 使得 $$\bex \sef{x_0,\phi}=1,\quad \sef{x_0,\phi_k}=0,\quad k=1,\cdots,n. \eex$$ 于是 $$\bex x_0\in\cap_{k=1}^n \ker \phi_k,\quad x_0\not\in \ker \phi. \eex$$

[Everyday Mathematics]20150118的更多相关文章

  1. [Everyday Mathematics]20150304

    证明: $$\bex \frac{2}{\pi}\int_0^\infty \frac{1-\cos 1\cos \lm-\lm \sin 1\sin \lm}{1-\lm^2}\cos \lm x\ ...

  2. [Everyday Mathematics]20150303

    设 $f$ 是 $\bbR$ 上的 $T$ - 周期函数, 试证: $$\bex \int_T^\infty\frac{f(x)}{x}\rd x\mbox{ 收敛 } \ra \int_0^T f( ...

  3. [Everyday Mathematics]20150302

    $$\bex |p|<\frac{1}{2}\ra \int_0^\infty \sex{\frac{x^p-x^{-p}}{1-x}}^2\rd x =2(1-2p\pi \cot 2p\pi ...

  4. [Everyday Mathematics]20150301

    设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^ ...

  5. [Everyday Mathematics]20150228

    试证: $$\bex \int_0^\infty \sin\sex{x^3+\frac{\pi}{4}}\rd x =\frac{\sqrt{6}+\sqrt{2}}{4}\int_0^\infty ...

  6. [Everyday Mathematics]20150227

    (Marden's Theorem) 设 $p(z)$ 是三次复系数多项式, 其三个根 $z_1,z_2,z_3$ 不共线; 再设 $T$ 是以 $z_1,z_2,z_3$ 为顶点的三角形. 则存在唯 ...

  7. [Everyday Mathematics]20150226

    设 $z\in\bbC$ 适合 $|z+1|>2$. 试证: $$\bex |z^3+1|>1. \eex$$

  8. [Everyday Mathematics]20150225

    设 $f:\bbR\to\bbR$ 二次可微, 适合 $f(0)=0$. 试证: $$\bex \exists\ \xi\in\sex{-\frac{\pi}{2},\frac{\pi}{2}},\s ...

  9. [Everyday Mathematics]20150224

    设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.

随机推荐

  1. POJ 1330 Nearest Common Ancestors(求最近的公共祖先)

    题意:给出一棵树,再给出两个节点a.b,求离它们最近的公共祖先.方法一: 先用vector存储某节点的子节点,fa数组存储某节点的父节点,最后找出fa[root]=0的根节点root.      之后 ...

  2. 2014多校第一场A题 || HDU 4861 Couple doubi

    题目链接 题意 : 有K个球,给你一个数P,可以求出K个值,(i=1,2,...,k) : 1^i+2^i+...+(p-1)^i (mod p).然后女朋友先取,再xp取,都希望赢,如果女朋友能赢输 ...

  3. mysql 多表 update sql语句总结

    mysql 多表 update 有几种不同的写法. 假定我们有两张表,一张表为Product表存放产品信息,其中有产品价格列Price:另外一张表是ProductPrice表,我们要将ProductP ...

  4. java生成二维码的三个工具

    1.  使用SwetakeQRCode在Java项目中生成二维码 http://swetake.com/qr/ 下载地址 或着http://sourceforge.jp/projects/qrcode ...

  5. RN学习1——前奏,app插件化和热更新的探索

    react_native_banner-min.png React Native(以下简称RN)有大量前端开发者的追捧.前端开发是一个活跃的社区,一直尝试着一统前后端,做一个全栈开发,RN就是他们在客 ...

  6. Linux开机启动流程

    开机过程指的是从打开计算机电源直到LINUX显示用户登录画面的全过程:       1)加载BIOS       2)读取MBR       3)Boot Loader       4)加载内核    ...

  7. Photoshop:笔刷制作和安装

    笔刷制作 1.新建一个文档,大小为要制作的笔刷大小,把画笔图像放里面 2.选择:菜单->编辑->定义画笔预设,这时在画笔面板中会出现刚定义的画笔 3.存储画笔,可以把当前的笔刷保存为一个. ...

  8. NC / Netcat - 反弹Shell

    原理 实验环境: 攻击机:windows机器,IP:192.168.12.109 受害机:linux机器,IP:192.168.79.1 攻击机:设置本地监听端口2222 C:\netcat>n ...

  9. Android给listview的item设定高度

    在item的layout文件中,用android:layout_height设置item的高度.运行,高度设置无效. 解决办法: 给item设定minHeight,即可. -------------- ...

  10. Android 动态改变布局属性RelativeLayout.LayoutParams.addRule()

    我们知道,在 RelativeLayout 布局中有很多特殊的属性,通常在载入布局之前,在相关的xml文件中进行静态设置即可. 但是,在有些情况下,我们需要动态设置布局的属性,在不同的条件下设置不同的 ...