【洛谷】P2904 [USACO08MAR]跨河River Crossing(dp)
题目描述
Farmer John is herding his N cows (1 <= N <= 2,500) across the expanses of his farm when he finds himself blocked by a river. A single raft is available for transportation.
FJ knows that he must ride on the raft for all crossings and that that adding cows to the raft makes it traverse the river more slowly.
When FJ is on the raft alone, it can cross the river in M minutes (1 <= M <= 1000). When the i cows are added, it takes M_i minutes (1 <= M_i <= 1000) longer to cross the river than with i-1 cows (i.e., total M+M_1 minutes with one cow, M+M_1+M_2 with two, etc.). Determine the minimum time it takes for Farmer John to get all of the cows across the river (including time returning to get more cows).
Farmer John以及他的N(1 <= N <= 2,500)头奶牛打算过一条河,但他们所有的渡河工具,仅仅是一个木筏。 由于奶牛不会划船,在整个渡河过程中,FJ必须始终在木筏上。在这个基础上,木筏上的奶牛数目每增加1,FJ把木筏划到对岸就得花更多的时间。 当FJ一个人坐在木筏上,他把木筏划到对岸需要M(1 <= M <= 1000)分钟。当木筏搭载的奶牛数目从i-1增加到i时,FJ得多花M_i(1 <= M_i <= 1000)分钟才能把木筏划过河(也就是说,船上有1头奶牛时,FJ得花M+M_1分钟渡河;船上有2头奶牛时,时间就变成M+M_1+M_2分钟。后面的依此类推)。那么,FJ最少要花多少时间,才能把所有奶牛带到对岸呢?当然,这个时间得包括FJ一个人把木筏从对岸划回来接下一批的奶牛的时间。
输入输出格式
输入格式:
Line 1: Two space-separated integers: N and M
- Lines 2..N+1: Line i+1 contains a single integer: M_i
输出格式:
- Line 1: The minimum time it takes for Farmer John to get all of the cows across the river.
输入输出样例
说明
There are five cows. Farmer John takes 10 minutes to cross the river alone, 13 with one cow, 17 with two cows, 23 with three, 123 with four, and 124 with all five.
Farmer John can first cross with three cows (23 minutes), then return (10 minutes), and then cross with the last two (17 minutes). 23+10+17 = 50 minutes total.
-----------------------------------------------------------------------------------
分析:dp,都在注释里了。好吧,我看了题解,我dp好菜啊。
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn=;
ll dp[maxn],v[maxn];//用i头牛的最小时间
int main()
{
ll n,m;
scanf("%lld%lld",&n,&m);
v[]=*m;
for(int i=;i<=n;i++)
{
ll a;
scanf("%lld",&a);
v[i]=v[i-]+a;
dp[i]=;//初始化
}
dp[]=;//初始化
for(int i=;i<=n;i++)
{
dp[i]=v[i];
for(int j=;j<i;j++)
dp[i]=min(dp[i],dp[j]+v[i-j]);//设置断点
}
printf("%lld",dp[n]-m);//最后一次不用回来
return ;
}
【洛谷】P2904 [USACO08MAR]跨河River Crossing(dp)的更多相关文章
- 洛谷—— P2904 [USACO08MAR]跨河River Crossing
https://www.luogu.org/problem/show?pid=2904 题目描述 Farmer John is herding his N cows (1 <= N <= ...
- 洛谷 P2904 [USACO08MAR]跨河River Crossing
题目 动规方程 f[i]=min(f[i],f[i−j]+sum) 我们默认为新加一头牛,自占一条船.想象一下,它不断招呼前面的牛,邀请它们坐自己这条船,当且仅当所需总时间更短时,前一头奶牛会接受邀请 ...
- bzoj1617 / P2904 [USACO08MAR]跨河River Crossing
P2904 [USACO08MAR]跨河River Crossing 显然的dp 设$f[i]$表示运走$i$头奶牛,木筏停在未过河奶牛一侧所用的最小代价 $s[i]$表示一次运$i$头奶牛到对面的代 ...
- P2904 [USACO08MAR]跨河River Crossing
题目描述 Farmer John is herding his N cows (1 <= N <= 2,500) across the expanses of his farm when ...
- [USACO08MAR]跨河River Crossing dp
题目描述 Farmer John is herding his N cows (1 <= N <= 2,500) across the expanses of his farm when ...
- 【洛谷2904/BZOJ1617】[USACO08MAR]跨河River Crossing(动态规划)
题目:洛谷2904 分析: 裸dp-- dp方程也不难想: \(dp[i]\)表示运\(i\)头牛需要的最短时间,\(sum[i]\)表示一次运\(i\)头牛(往返)所需的时间,则 \[dp[i]=m ...
- [luoguP2904] [USACO08MAR]跨河River Crossing(DP)
传送门 f[i] 表示送前 i 头牛过去再回来的最短时间 f[i] = min(f[i], f[j] + sum[i - j] + m) (0 <= j < i) ——代码 #includ ...
- 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(动态规划,斜率优化,决策单调性,线性规划,单调队列)
洛谷题目传送门 用两种不一样的思路立体地理解斜率优化,你值得拥有. 题意分析 既然所有的土地都要买,那么我们可以考虑到,如果一块土地的宽和高(其实是蒟蒻把长方形立在了平面上)都比另一块要小,那么肯定是 ...
- 洛谷CF809C Find a car(数位DP)
洛谷题目传送门 通过瞪眼法发现,\(a_{i,j}=(i-1)\text{ xor }(j-1)+1\). 二维差分一下,我们只要能求\(\sum\limits_{i=0}^x\sum\limits_ ...
随机推荐
- 关于Gradle2.0的翻译说明
Gradle1.12的翻译情况 Gradle实际上在4月16日就已经在对应的OmegaT项目上完成了翻译,后因项目繁忙,直到7月20日才完成了Github上Gradledoc项目及七牛站点的更新. 总 ...
- 怎么样编译DeepMind?
可以通过下面的文章来编译著名的deepmind系统. How to build DeepMind LabDeepMind Lab uses Bazel as its build system. Its ...
- erl_0019《硝烟中的erlang》 读书笔记005 “进程信息"
对一个运行中的Erlang系统来说,进程绝对是重要的组成部分.正因为进程是所有运行实体的基础,因此会想去了解它们的更多信息.幸运的是,VM提供了大量的可用信息,其中有些可以安全使用,有些在生产环境中使 ...
- AngularX 指令(ngForof)(转载)
该指令用于基于可迭代对象中的每一项创建相应的模板.每个实例化模板的上下文对象继承于外部的上下文对象,其值与可迭代对象对应项的值相关联. NgForOf 指令语法 * 语法糖 <li *ngFor ...
- hexo个人博客搭建
遇见西门的个人博客 https://www.simon96.online/ 内容详细!
- Cookie用法
//写入 protected void Button1_Click(object sender, EventArgs e) { HttpCookie cookie=new HttpCookie(&qu ...
- Python Tkinter 学习历程 一
一丶一个简单的程序 from tkinter import * #引入所有类#查看tk版本#tkinter._test() root = Tk(); #对这个类进行实例化 w1 = Label(roo ...
- 《DSP using MATLAB》示例Example 8.7
%% ------------------------------------------------------------------------ %% Output Info about thi ...
- 异常处理过程和异常处理的执行顺序(针对try{}catch{}finally{}而言)
1.异常的处理方式有两种分别为:try{}catch{}finally{}和throws下面简单说一下这两者的区别和联系. 2.出现异常之后如果没有进行捕获处理系统就会直接将这个异常栈的跟踪信息直接打 ...
- nginx ngscript 简单使用
备注: 默认没有集成到nginx包里,需要单独安装(推荐使用动态模块的方式进行安装) 1. 安装 wget https://nginx.org/download/nginx-1.13.11.tar.g ...