Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 8637   Accepted: 3915

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.  Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

Source

 
 
 
 
 #include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define eps 1e-8
#define oo 100000000
#define pi acos(-1)
struct point
{
double x,y;
point(double _x = 0.0,double _y = 0.0)
{
x =_x;
y =_y;
}
point operator -(const point &b)const
{
return point(x - b.x, y - b.y);
}
point operator +(const point &b)const
{
return point(x +b.x, y + b.y);
}
double operator ^(const point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const point &b)const
{
return x*b.x + y*b.y;
}
}p[]; double dis(point a,point b)//两点之间的距离
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} int dcmp(double a)//判断一个double型的符号
{
if(fabs(a)<eps)return ;
if(a>)return ;
else return -;
} int isxiangjiao(point a,point b,point c,point d)//判断直线相交,重合,平行!!!
{
point aa,bb,cc,dd;
aa=b-a;
bb=d-c;
if(dcmp(aa^bb)!=)return ;//相交
else
{
aa=a-d;
bb=b-c;
cc=a-c;
dd=b-d;
if(dcmp(aa^bb)!=||dcmp(cc^dd)!=)return ;//平行
else return ;//重合
}
} point getjiaodian(point p,point v,point q,point w)//参数方程,v,w都为方向向量,p,q,为两直线上的点,求交点
{
point u;
u=p-q;
double t=(w^u)/(v^w);
v.x=t*v.x;v.y=t*v.y;
return p+v;
} int main()
{
int T,i,j;
scanf("%d",&T);
printf("INTERSECTING LINES OUTPUT\n");
while(T--)
{
for(i=;i<=;i++)scanf("%lf%lf",&p[i].x,&p[i].y); if(isxiangjiao(p[],p[],p[],p[])==)
{
point ans,v,w,q;
v=p[]-p[];
w=p[]-p[];
ans=getjiaodian(p[],v,p[],w);
printf("POINT %.2f %.2f\n",ans.x,ans.y);
} if(isxiangjiao(p[],p[],p[],p[])==)printf("NONE\n");//平行 if(isxiangjiao(p[],p[],p[],p[])==)printf("LINE\n");//重合
}
printf("END OF OUTPUT\n");
return ;
}

poj 1269 Intersecting Lines(直线相交)的更多相关文章

  1. POJ 1269 - Intersecting Lines 直线与直线相交

    题意:    判断直线间位置关系: 相交,平行,重合 include <iostream> #include <cstdio> using namespace std; str ...

  2. POJ 1269 Intersecting Lines 直线交

    不知道谁转的计算几何题集里面有这个题...标题还写的是基本线段求交... 结果题都没看就直接敲了个线段交...各种姿势WA一遍以后发现题意根本不是线段交而是直线交...白改了那个模板... 乱发文的同 ...

  3. POJ 1269 Intersecting Lines(判断两直线位置关系)

    题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...

  4. POJ 1269 Intersecting Lines【判断直线相交】

    题意:给两条直线,判断相交,重合或者平行 思路:判断重合可以用叉积,平行用斜率,其他情况即为相交. 求交点: 这里也用到叉积的原理.假设交点为p0(x0,y0).则有: (p1-p0)X(p2-p0) ...

  5. POJ 1269 Intersecting Lines(直线相交判断,求交点)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8342   Accepted: 378 ...

  6. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  7. poj 1269 Intersecting Lines——叉积求直线交点坐标

    题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...

  8. POJ 1269 Intersecting Lines (判断直线位置关系)

    题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...

  9. POJ 1269 Intersecting Lines(线段相交,水题)

    id=1269" rel="nofollow">Intersecting Lines 大意:给你两条直线的坐标,推断两条直线是否共线.平行.相交.若相交.求出交点. ...

随机推荐

  1. B - Sumdiv(第三周)

    B - Sumdiv 题目链接:https://vjudge.net/contest/154063#problem/B 题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题思路 ...

  2. POJ 1434 Fill the Cisterns! (模拟 or 二分)

    Fill the Cisterns! 题目链接: http://acm.hust.edu.cn/vjudge/contest/129783#problem/F Description During t ...

  3. bat语法

    注释 :: 注释无回显 rem 注释有回显 关闭和开启回显 :: 关闭回显 @echo off echo abc :: 开启回显 echo on echo 查看命令帮助说明 rd /? 目录操作 创建 ...

  4. 洛谷P4124 手机号码

    传送 这题也就是条件限制多了点,也没有别的,套板子就好了 注意这里没有前导零,所以第一位是从1开始填 看注释叭 #include<iostream> #include<cstdio& ...

  5. 与Pig相似,Hive是一种MapReduce上的抽象工具(除非使用新的执行引擎)

    Hive隐藏了后面的MapReduce任务 EXPLAIN sql: 分析查询计划.

  6. iOS即时通讯之CocoaAsyncSocket源码解析二

    原文 前言 本文承接上文:iOS即时通讯之CocoaAsyncSocket源码解析一 上文我们提到了GCDAsyncSocket的初始化,以及最终connect之前的准备工作,包括一些错误检查:本机地 ...

  7. 九、MySQL报错( (1292, u"Truncated incorrect DOUBLE value: '424a000000066'") result = self._query(query))

    1.数据库sql语句:SELECT seat_id FROM netsale_order_seat os join netsale_order nor on os.order_code=nor.ord ...

  8. 爬虫解析库xpath

    # xpath简介 XPath即为XML路径语言(XML Path Language),它是一种用来确定XML文档中某部分位置的语言.用于在 XML 文档中通过元素和属性进行导航. XPath基于XM ...

  9. docker远程访问TLS证书认证shell

    docker开启远程访问端口,防止非法访问 配置证书认证 配置防火墙或安全策略 #!/bin/bash # docker.tls.sh # 环境centos 7 ,root # 创建 Docker T ...

  10. js(javascript)取float型小数点后两位数的方法

    以下我们将为大家介绍 JavaScript 保留两位小数的实现方法:四舍五入以下处理结果会四舍五入: ? 1 2 var num =2.446242342; num = num.toFixed(2); ...