Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 8637   Accepted: 3915

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.  Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

Source

 
 
 
 
 #include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define eps 1e-8
#define oo 100000000
#define pi acos(-1)
struct point
{
double x,y;
point(double _x = 0.0,double _y = 0.0)
{
x =_x;
y =_y;
}
point operator -(const point &b)const
{
return point(x - b.x, y - b.y);
}
point operator +(const point &b)const
{
return point(x +b.x, y + b.y);
}
double operator ^(const point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const point &b)const
{
return x*b.x + y*b.y;
}
}p[]; double dis(point a,point b)//两点之间的距离
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} int dcmp(double a)//判断一个double型的符号
{
if(fabs(a)<eps)return ;
if(a>)return ;
else return -;
} int isxiangjiao(point a,point b,point c,point d)//判断直线相交,重合,平行!!!
{
point aa,bb,cc,dd;
aa=b-a;
bb=d-c;
if(dcmp(aa^bb)!=)return ;//相交
else
{
aa=a-d;
bb=b-c;
cc=a-c;
dd=b-d;
if(dcmp(aa^bb)!=||dcmp(cc^dd)!=)return ;//平行
else return ;//重合
}
} point getjiaodian(point p,point v,point q,point w)//参数方程,v,w都为方向向量,p,q,为两直线上的点,求交点
{
point u;
u=p-q;
double t=(w^u)/(v^w);
v.x=t*v.x;v.y=t*v.y;
return p+v;
} int main()
{
int T,i,j;
scanf("%d",&T);
printf("INTERSECTING LINES OUTPUT\n");
while(T--)
{
for(i=;i<=;i++)scanf("%lf%lf",&p[i].x,&p[i].y); if(isxiangjiao(p[],p[],p[],p[])==)
{
point ans,v,w,q;
v=p[]-p[];
w=p[]-p[];
ans=getjiaodian(p[],v,p[],w);
printf("POINT %.2f %.2f\n",ans.x,ans.y);
} if(isxiangjiao(p[],p[],p[],p[])==)printf("NONE\n");//平行 if(isxiangjiao(p[],p[],p[],p[])==)printf("LINE\n");//重合
}
printf("END OF OUTPUT\n");
return ;
}

poj 1269 Intersecting Lines(直线相交)的更多相关文章

  1. POJ 1269 - Intersecting Lines 直线与直线相交

    题意:    判断直线间位置关系: 相交,平行,重合 include <iostream> #include <cstdio> using namespace std; str ...

  2. POJ 1269 Intersecting Lines 直线交

    不知道谁转的计算几何题集里面有这个题...标题还写的是基本线段求交... 结果题都没看就直接敲了个线段交...各种姿势WA一遍以后发现题意根本不是线段交而是直线交...白改了那个模板... 乱发文的同 ...

  3. POJ 1269 Intersecting Lines(判断两直线位置关系)

    题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...

  4. POJ 1269 Intersecting Lines【判断直线相交】

    题意:给两条直线,判断相交,重合或者平行 思路:判断重合可以用叉积,平行用斜率,其他情况即为相交. 求交点: 这里也用到叉积的原理.假设交点为p0(x0,y0).则有: (p1-p0)X(p2-p0) ...

  5. POJ 1269 Intersecting Lines(直线相交判断,求交点)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8342   Accepted: 378 ...

  6. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  7. poj 1269 Intersecting Lines——叉积求直线交点坐标

    题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...

  8. POJ 1269 Intersecting Lines (判断直线位置关系)

    题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...

  9. POJ 1269 Intersecting Lines(线段相交,水题)

    id=1269" rel="nofollow">Intersecting Lines 大意:给你两条直线的坐标,推断两条直线是否共线.平行.相交.若相交.求出交点. ...

随机推荐

  1. LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)

    传送门 解题思路 不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直 ...

  2. hdu3714 Error Curves

    题目: Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  3. Last Defence

    Given two integers A and B. Sequence S is defined as follow: • S0 = A •S1 = B • Si = |Si−1 − Si−2| f ...

  4. 官方文档翻译-Today

    原文链接: Today 最后更新:2017-02-18 译文: 应用的今日视图扩展被称作小部件.小部件为用户提供快速访问重要信息的入口.例如,用户打开今日视图实时查看股票价格或天气情况,查看今天的日程 ...

  5. hashcode native

    hashcode Java中的hashCode方法就是根据一定的规则将与对象相关的信息(比如对象的存储地址,对象的字段等)映射成一个数值,这个数值称作为散列值. 在设计hashCode方法和equal ...

  6. js方法返回多值如何取值demo

    js方法返回,如何取值?下面demo两种方法 new array 和 json 返回值 取值示例. 方法一:  new array <html> <head> <meta ...

  7. error: ‘xxx’ does not name a type

    error: ‘TPlanMgr’ does not name a type 两个头文件相互应用会导致一个头文件你的类型无定义问题.

  8. 开源认证组件汇总 Kerberos和CAS

    一.Kerberos 1.Kerberos原理和工作机制 概述:Kerberos的工作围绕着票据展开,票据类似于人的驾驶证,驾驶证标识了人的信息,以及其可以驾驶的车辆等级. 1.1 客户机初始验证   ...

  9. 关于Java泛型实现原理的思考与一般用法示例总结

    面向对象的一个重要目标是对代码重用的支持.支持这个目标的一个重要机制就是泛型机制.在1.5版本之前,java并没有直接支持泛型实现,泛型编程的实现时通过使用继承的一些基本概念来完成的. 这种方式的局限 ...

  10. 【洛谷P1036 选数】

    这个题显然用到了深搜的内容 让我们跟着代码找思路 #include<bits/stdc++.h>//万能头 ],ans; inline bool prime(int n)//最简单的判定素 ...