knn 数据集准备
"""
Created on Mon Aug 26 20:57:24 2019 @author: huoqs knn algorithm
"""
import numpy as np
import matplotlib.pyplot as plt def generate_data(num_samples, num_features=2):
data_size = (num_samples, num_features)
data = np.random.randint(0, 100, data_size) label_size = (num_samples, 1)
labels = np.random.randint(0, 2, label_size)
# must be float32
return data.astype(np.float32), labels def plot_data(all_blue, all_red):
plt.scatter(all_blue[:, 0], all_blue[:, 1], c = 'b', marker = 's', s = 180)
plt.scatter(all_red[:, 0], all_red[:, 1], c = 'r', marker = '^', s = 180)
plt.xlabel('x')
plt.ylabel('y') plt.style.use('ggplot') np.random.seed(42) train_data, labels = generate_data(11) # print(train_data, labels) blue = train_data[labels.ravel() == 0]
red = train_data[labels.ravel() == 1] plot_data(blue, red)
知识点:
1、np.random.randint 函数,生成一个数组,参数:low,high,size,type
https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.random.randint.html
2、ndarray.ravel(),将数组扁平化,变为一维数组
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ravel.html
knn 数据集准备的更多相关文章
- 使用KNN对MNIST数据集进行实验
由于KNN的计算量太大,还没有使用KD-tree进行优化,所以对于60000训练集,10000测试集的数据计算比较慢.这里只是想测试观察一下KNN的效果而已,不调参. K选择之前看过貌似最好不要超过2 ...
- 使用PCA + KNN对MNIST数据集进行手写数字识别
首先引入需要的包 %matplotlib inline import numpy as np import scipy as sp import pandas as pd import matplot ...
- kNN处理iris数据集-使用交叉验证方法确定最优 k 值
基本流程: 1.计算测试实例到所有训练集实例的距离: 2.对所有的距离进行排序,找到k个最近的邻居: 3.对k个近邻对应的结果进行合并,再排序,返回出现次数最多的那个结果. 交叉验证: 对每一个k,使 ...
- OpenCV-Python 使用OCR手写数据集运行KNN | 五十四
目标 在本章中 我们将使用我们在kNN上的知识来构建基本的OCR应用程序. 我们将尝试使用OpenCV自带的数字和字母数据集. 手写数字的OCR 我们的目标是构建一个可以读取手写数字的应用程序.为此, ...
- KNN算法实现对iris数据集的预测
KNN算法的实现 import pandas as pd from math import dist k = int(input("请输入k值:")) dataTest = pd. ...
- CS231n 第一次作业KNN中本地CIFAR10数据集的载入
一.问题描述 网上绝大多数作业参考都是在jupyter下运行的,数据集载入过程一般如下: from cs231n.data_utils import load_CIFAR10 #导入数据集,并打印出数 ...
- KNN手写实践:Python基于数据集整体计算以及排序
1. 距离计算,不要通过遍历每个样本来计算和指定样本距离,而是通过对于指定样本进行广播(复制)成为一个shape和全局一致后,再进行整体计算,这里的广播 / 复制采用的是tile函数来实现的: 2. ...
- 使用KNN对iris数据集进行分类——python
filename='g:\data\iris.csv' lines=fr.readlines()Mat=zeros((len(lines),4))irisLabels=[]index=0for lin ...
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
随机推荐
- ES6——generator-yield
yield 既可传参,又可以返回 第一个next()传参无效,只用来启动 如果函数前漏掉 * 就是普通函数 如果有yield会报错, ReferenceError: yield is not defi ...
- Vue实现active点击切换
Vue实现active点击切换 循环的情况: 1.点击时传入index索引(获取当前点击的是哪个) @click=“active(index)” 2.将索引值传入class(索引等于几就第几个添加ac ...
- windows 安装nodejs 和 npm
1.从nodejs官网下载 安装文件,我安装的版本是 node-v10.15.0-x64.msi ,双击进行安装. 2.安装完成后可以查看相关目录,这里会有一个node_modules目录和node ...
- C# 获得系统环境
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- MYSQL学习笔记——sql语句优化之索引
上一篇博客讲了可以使用慢查询日志定位耗时sql,使用explain命令查看mysql的执行计划,以及使用profiling工具查看语句执行真正耗时的地方,当定位了耗时之后怎样优化呢?这篇博客会介绍my ...
- 03机器学习实战之决策树scikit-learn实现
sklearn.tree.DecisionTreeClassifier 基于 scikit-learn 的决策树分类模型 DecisionTreeClassifier 进行的分类运算 http://s ...
- jquery 模态对话框传值,删除,新增表格行
个人的练习代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...
- php7 mysqli连接mysql的几种方式
一.过程是方法 function connect(){ static $conn; if(!$conn){ $conn = mysqli_connect(DB_HOST,DB_USER,DB_PWD) ...
- Java EE的优越性主要表现在哪些方面
J2 EE的优越性主要表现在哪些方面 J2EE基于JAVA 技术,与平台无关. J2EE拥有开放标准,许多大型公司实现了对该规范支持的应用服务器.如BEA ,IBM,ORACLE等. J2EE提供相当 ...
- 1N4148
摘自http://baike.baidu.com/link?url=0iTO7zZvHpCeJiZurTPpjDT95YdJu7cKdTeCWfol36b4JG5ii15leQ7K4wJWAZIBNb ...