题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件 附件

电脑 打印机,扫描仪

书柜 图书

书桌 台灯,文具

工作椅 无

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有00个、11个或22个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的NN元。于是,他把每件物品规定了一个重要度,分为55等:用整数1-51−5表示,第55等最重要。他还从因特网上查到了每件物品的价格(都是1010元的整数倍)。他希望在不超过NN元(可以等于NN元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第jj件物品的价格为v_[j]v[​j],重要度为w_[j]w[​j],共选中了kk件物品,编号依次为j_1,j_2,…,j_kj1​,j2​,…,jk​,则所求的总和为:

v_[j_1] \times w_[j_1]+v_[j_2] \times w_[j_2]+ …+v_[j_k] \times w_[j_k]v[​j1​]×w[​j1​]+v[​j2​]×w[​j2​]+…+v[​jk​]×w[​jk​]。

请你帮助金明设计一个满足要求的购物单。

输入输出格式

输入格式:

第11行,为两个正整数,用一个空格隔开:

N mNm (其中N(<32000)N(<32000)表示总钱数,m(<60)m(<60)为希望购买物品的个数。) 从第22行到第m+1m+1行,第jj行给出了编号为j-1j−1的物品的基本数据,每行有33个非负整数

v p qvpq (其中vv表示该物品的价格(v<10000v<10000),p表示该物品的重要度(1-51−5),qq表示该物品是主件还是附件。如果q=0q=0,表示该物品为主件,如果q>0q>0,表示该物品为附件,qq是所属主件的编号)

输出格式:

一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000<200000)。

输入输出样例

输入样例#1: 复制

1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出样例#1: 复制

2200

题意:说手上有money元钱,有n件物品,这n件物品有主件和附件之分,要买附件必须已经购买了该附件的主件,每个主件只有可能有(0,1,2)个附件,每个物品有个重要度和价格,每个物品的价值是“重要度*价格”,你要利用手上的money元钱
让你能够获得的价值最大 思路:首先这肯定是一个背包问题但是又和传统的背包问题有两点区别
1,主件和附件,每个主件只有(0,1,2)个附件
2,价值计算方式是(重要度*价格) 解决
1.因为附件数量极小,所以我们购买物品只有5种方案
(1)购买主件
(2)不购买
(3)购买主件和1号附件
(4)购买主件和2号附件
(5)购买主件和1号和2号
所以我们可以当作是分组背包,一个分组有这五种物品,每个分组只能购买一次 2,价值计算方式其实并不影响,我们预处理出价值其实是一样的 这个问题延伸到多个附件问题是有依赖的背包问题,后面更新博客来讲解
#include<bits/stdc++.h>
#define mod 1000000007
#define len 200005
#define maxn 60005
using namespace std;
typedef long long ll;
ll money,n;
pair<ll,ll> m[];
pair<ll,ll> mp[][];
ll dp[];
int vis[];
int main(){
ll x,y,z;
cin>>money>>n;
for(int i=;i<=n;i++){
cin>>x>>y>>z;
vis[i]=z;
if(z==){
m[i].first=x;
m[i].second=y;
}
else{
if(mp[z][].first==){
mp[z][].first=x;
mp[z][].second=y;
}
else{
mp[z][].first=x;
mp[z][].second=y;
}
}
}
for(int i=;i<=n;i++){
if(vis[i]) continue;
for(int j=money;j>=;j--){
if(j>=m[i].first){//分组背包五种情况,不购买可以不用计算
dp[j]=max(dp[j],dp[j-m[i].first]+m[i].first*m[i].second);
}
if(j>=m[i].first+mp[i][].first){
dp[j]=max(dp[j],dp[j-m[i].first-mp[i][].first]+m[i].first*m[i].second+mp[i][].first*mp[i][].second);
}
if(j>=m[i].first+mp[i][].first){
dp[j]=max(dp[j],dp[j-m[i].first-mp[i][].first]+m[i].first*m[i].second+mp[i][].first*mp[i][].second);
}
if(j>=m[i].first+mp[i][].first+mp[i][].first){
dp[j]=max(dp[j],dp[j-m[i].first-mp[i][].first-mp[i][].first]+m[i].first*m[i].second+mp[i][].first*mp[i][].second+mp[i][].first*mp[i][].second);
}
}
}
cout<<dp[money];
}

P1064 金明的预算方案 (分组背包稍稍变形)的更多相关文章

  1. 有依赖的背包---P1064 金明的预算方案

    P1064 金明的预算方案 solution 1 暴搜 70pt dfs (当前搜到了第几个物品,产生的总价值,剩下多少钱) 剪枝 1:如果剩下的钱数<0,直接return就好,没必要继续了 剪 ...

  2. 【dp】P1064 金明的预算方案

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...

  3. 洛谷 P1064 金明的预算方案【有依赖的分组背包】

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱 ...

  4. 洛谷 P1064 金明的预算方案 (有依赖的0/1背包)

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...

  5. 洛谷P1064 金明的预算方案(01背包)

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NNN元钱就行” ...

  6. 洛谷 P1064 金明的预算方案

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...

  7. 洛谷P1064 金明的预算方案

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...

  8. 洛谷 P1064 金明的预算方案(有依赖的背包问题)

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...

  9. 【洛谷】P1064 金明的预算方案(dp)

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...

随机推荐

  1. 【TCP】四次握手原因 / TIME_WAIT作用

    为什么建立TCP连接需要三次握手? 原因:为了应对网络中存在的延迟的重复数组的问题 例子: 假设client发起连接的连接请求报文段在网络中没有丢失,而是在某个网络节点长时间滞留了,导致延迟到达ser ...

  2. hdu1059&poj1014 Dividing (dp,多重背包的二分优化)

    Problem Description Marsha and Bill own a collection of marbles. They want to split the collection a ...

  3. SCP-Py-002

    项目编号:Py-002 项目等级:EuclidKeter 特殊收容措施: Py-002-1目前被映射在Researcher Kevin的服务器位于Site-Pyproject地下防无线电渗透室且被切断 ...

  4. Alpha冲刺阶段博客目录

    Alpha冲刺阶段博客目录 Scrum Meeting 时间 链接 内容 第六周 https://www.cnblogs.com/error0/p/11815255.html 需求分析 第七周 htt ...

  5. ASP.NET MVC 分页之 局部视图

    using System; using System.Collections.Generic; using System.Linq; using System.Security.Cryptograph ...

  6. 用JOptionPane类实现各种对话框

    用JOptionPane类实现各种对话框 运行结果: 下面部分参考: JOptionPane类提示框的一些常用的方法 - - ITeye博客  http://847353020-qq-com.itey ...

  7. 73、salesforce通过JAVA来Call在salesforce中已经写好的Restful处理接口

    /** *使用salesforce通过REST方式作为webservice,需要以下几点 *1.类和方法需要global,方法需要静态 *2.类需要通过RestResource(UrlMapping= ...

  8. numpy 中文手册

    https://yiyibooks.cn/xx/NumPy_v111/user/index.html

  9. Linux命令 who

    who :显示当前登入系统的用户信息 显示的内容主要包括: 用户名,登录终端,上线时间,停留时间,动作,UID等 权限:所有使用者 语法: who  [option] ...[ file | arg1 ...

  10. 安卓真机或者模拟器运行安装应用时提示 Failure [INSTALL_FAILED_NO_MATCHING_ABIS: Failed to extract native libraries, res=-113]解决办法

    有时候为了方便调试APP,会在电脑上开启模拟器来调试我们的代码,有时候会出现 Failure [INSTALL_FAILED_NO_MATCHING_ABIS: Failed to extract n ...