Description

ftiasch 有 N 个物品, 体积分别是 W1W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1W2, ..., WN, 物品的体积。

Output

一个 N × M 的矩阵, Count(i, x)的末位数字。

Sample Input

3 2
1 1 2

Sample Output

11
11
21

HINT

解析:首先我们先不要考虑是否会有一个物品消失,直接先用f数组来表示到第i个物品时,能达到j的重量的方案有多少,然后用一个c数组来表示所有物品中,除去第i个物品,能达到j的重量的方案有多少,c[i][j]=f[n][j]-c[i][j-a[i]](c[i][j-a[i]]指除去第i个物品中能达到j-a[i]重量的方案数即其他物品加上a[i](即算上第i个物品)后能达到j的重量的方案数,减去后,剩下的就是,不用第i个物品达到j的方案数);(a[i]表示当前物品的重量)具体步骤看程序。

ps:因为题目要求输出个位数,所以过程中必须取余10,但是在后面个位数减去个位数会造成负数的情况,所以在一些地方需要+10后再运算。

#include<iostream>
#include<cstdio>
using namespace std;
long long f[][],w[],b[][],x,n,m;
int main()
{
cin>>n>>m;
for (int i=;i<=n;i++) cin>>w[i];
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
f[i][j]=,b[i][j];
f[][]=;//刚开始前0个物品达到0的重量的方案数为一
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
if (j-w[i]>=) f[i][j]+=(f[i-][j-w[i]]+f[i-][j])%;//取或不取的方案数都加上
else f[i][j]+=f[i-][j]%; for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
if (j-w[i]>=) b[i][j]=(f[n][j]-b[i][j-w[i]]+)%;//不取第i个物品的达到j的重量的方案数由此得出,加10是为了避免个位与个位相减时出现负数。
else b[i][j]=f[n][j]%; for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
if (j!=m) cout<<b[i][j];
else cout<<b[i][j]<<endl;//输出
return ;
}

好啦

2287: 【POJ Challenge】消失之物的更多相关文章

  1. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  2. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  3. POJ Challenge消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  4. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  5. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  6. 【bzoj2287】[POJ Challenge]消失之物 背包dp

    题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...

  7. 【bozj2287】【[POJ Challenge]消失之物】维护多值递推

    (上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...

  8. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

  9. BZOJ 2287 【POJ Challenge】消失之物(DP+容斥)

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 986  Solved: 572[Submit][S ...

  10. BZOJ2287: 【POJ Challenge】消失之物

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 254  Solved: 140[Submit][S ...

随机推荐

  1. 关于对inputstream流的复制

    今天因为项目需要,获取到一个inputstream后,可能要多次利用它进行read的操作.由于流读过一次就不能再读了,所以得想点办法. 而InputStream对象本身不能复制,因为它没有实现Clon ...

  2. ORACLE-SELECT学习

    (一)select格式:SELECT [ ALL | DISTINCT ] <字段表达式1[,<字段表达式2[,…] FROM <表名1>,<表名2>[,…] [W ...

  3. 移动端UC浏览器和QQ浏览器的部分私有meta属性

    UC浏览器 1.设置屏幕横屏还是竖屏 <meta name="screen-orientation" content="portrait | landscape&q ...

  4. win10 Administrator没有管理员权限解决方案

    方法/步骤 在运行框 里面输入“gpedit.msc”. 打开组策略编辑器,计算机配置->windows设置->安全设置->->本地策略->安全选项 找到“用户账户控制: ...

  5. 纸上谈兵:左倾堆(leftist heap)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们之前讲解了堆(heap)的概念.堆是一个优先队列.每次从堆中取出的元素都是堆中 ...

  6. HttpURLConnection下载图片的两种方式

    public class MainActivity extends AppCompatActivity { private ImageView iv; private String imageurl ...

  7. 基于WDF的PCI/PCIe接口卡Windows驱动程序(3)- 驱动程序代码(头文件)

    原文出处:http://www.cnblogs.com/jacklu/p/4679304.html 在WDF的PCIe驱动程序中,共有四个.h文件(Public.h  Driver.h  Device ...

  8. delphi 10 seattle 中 解决IOS 9 限制使用HTTP 服务问题

    IOS 9 于17号早上正式开始推送,早上起来立马安装,这次升级包只有1G, 安装空间也大大降低(想起IOS 8 升级时,几乎把手机里面的东西删光了,满眼都是泪). 虽然安装后,网上几乎是铺天盖地的吐 ...

  9. MySQL的数据库无法插入中文是怎么回事?

    插入中文就报错: Incorrect string value: '\xE7\x8F\xBD\xE7\x8F\xBA' for column 'name' at row 1 用set names ut ...

  10. php 文件读取

    整理了一下PHP中读取文件的几个方法,方便以后查阅. 1.fread string fread ( int $handle , int $length ) fread() 从 handle 指向的文件 ...