Description

ftiasch 有 N 个物品, 体积分别是 W1W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1W2, ..., WN, 物品的体积。

Output

一个 N × M 的矩阵, Count(i, x)的末位数字。

Sample Input

3 2
1 1 2

Sample Output

11
11
21

HINT

解析:首先我们先不要考虑是否会有一个物品消失,直接先用f数组来表示到第i个物品时,能达到j的重量的方案有多少,然后用一个c数组来表示所有物品中,除去第i个物品,能达到j的重量的方案有多少,c[i][j]=f[n][j]-c[i][j-a[i]](c[i][j-a[i]]指除去第i个物品中能达到j-a[i]重量的方案数即其他物品加上a[i](即算上第i个物品)后能达到j的重量的方案数,减去后,剩下的就是,不用第i个物品达到j的方案数);(a[i]表示当前物品的重量)具体步骤看程序。

ps:因为题目要求输出个位数,所以过程中必须取余10,但是在后面个位数减去个位数会造成负数的情况,所以在一些地方需要+10后再运算。

#include<iostream>
#include<cstdio>
using namespace std;
long long f[][],w[],b[][],x,n,m;
int main()
{
cin>>n>>m;
for (int i=;i<=n;i++) cin>>w[i];
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
f[i][j]=,b[i][j];
f[][]=;//刚开始前0个物品达到0的重量的方案数为一
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
if (j-w[i]>=) f[i][j]+=(f[i-][j-w[i]]+f[i-][j])%;//取或不取的方案数都加上
else f[i][j]+=f[i-][j]%; for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
if (j-w[i]>=) b[i][j]=(f[n][j]-b[i][j-w[i]]+)%;//不取第i个物品的达到j的重量的方案数由此得出,加10是为了避免个位与个位相减时出现负数。
else b[i][j]=f[n][j]%; for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
if (j!=m) cout<<b[i][j];
else cout<<b[i][j]<<endl;//输出
return ;
}

好啦

2287: 【POJ Challenge】消失之物的更多相关文章

  1. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  2. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  3. POJ Challenge消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  4. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  5. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  6. 【bzoj2287】[POJ Challenge]消失之物 背包dp

    题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...

  7. 【bozj2287】【[POJ Challenge]消失之物】维护多值递推

    (上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...

  8. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

  9. BZOJ 2287 【POJ Challenge】消失之物(DP+容斥)

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 986  Solved: 572[Submit][S ...

  10. BZOJ2287: 【POJ Challenge】消失之物

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 254  Solved: 140[Submit][S ...

随机推荐

  1. git 强制回退服务器上的commit

    假设你有3个commit如下: commit 3 commit 2 commit 1   其中最后一次提交commit 3是错误的,那么可以执行: git reset --hard HEAD~1 你会 ...

  2. 将框架的底层改掉,改成一个轻量级的ORM

    公司底层的缺点 1.功能有限,只有增删查改 2.不支持异步 3.不支持懒加载 4.不支持泛型 5.不支持Linq 6.性能没做到最好,比如FirsttOrDefault()只能通过查找select * ...

  3. 如何修改SharePoint列表条数等阈值

    若要修改SharePoint中对列表最大条数等设定的阈值,可按如下步骤操作: 1. 打开页面:管理中心 > 应用程序管理 > 管理Web应用程序.2. 选择要修改阈值的Web应用程序,并在 ...

  4. 68. Longest Common Prefix

    Longest Common Prefix Write a function to find the longest common prefix string amongst an array of ...

  5. Spark Streaming源码解读之Receiver生成全生命周期彻底研究和思考

    本期内容 : Receiver启动的方式设想 Receiver启动源码彻底分析 多个输入源输入启动,Receiver启动失败,只要我们的集群存在就希望Receiver启动成功,运行过程中基于每个Tea ...

  6. 使用DotNetOpenAuth搭建OAuth2.0授权框架

    标题还是一如既往的难取. 我认为对于一个普遍问题,必有对应的一个简洁优美的解决方案.当然这也许只是我的一厢情愿,因为根据宇宙法则,所有事物总归趋于混沌,而OAuth协议就是混沌中的产物,不管是1.0. ...

  7. SQL笔记-第三章,数据的增删改

    1.数据的插入 简单的INSERT语句 INSERT INTO T_Person(FName,FAge,FRemark) VALUES(‘Tom’,18,’USA’) 简化的INSERT语句(只对部分 ...

  8. vim总结

    1.vim基础用法 注:该思维导图来自笔者<Linux就该这么学>读书笔记. 移动光标: 命令 描述 k 向上移动光标(移动一行) j 向下移动光标(移动一行) h 向左移动光标(移动一个 ...

  9. 三级联动---DropDownList控件

    AutoPostBack属性:意思是自动回传,也就是说此控件值更改后是否和服务器进行交互比如Dropdownlist控件,若设置为True,则你更换下拉列表值时会刷新页面(如果是网页的话),设置为fl ...

  10. 如何使用XproerUI库(WTL)-XproerUI界面库教程

    版权所有 2009-2015 荆门泽优软件有限公司 保留所有权利 产品首页:http://www.ncmem.com/apps/xproerui/index.asp 开发文档(SkinStudio): ...