2287: 【POJ Challenge】消失之物
Description
ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input
第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, ..., WN, 物品的体积。
Output
一个 N × M 的矩阵, Count(i, x)的末位数字。
Sample Input
1 1 2
Sample Output
11
21
HINT
解析:首先我们先不要考虑是否会有一个物品消失,直接先用f数组来表示到第i个物品时,能达到j的重量的方案有多少,然后用一个c数组来表示所有物品中,除去第i个物品,能达到j的重量的方案有多少,c[i][j]=f[n][j]-c[i][j-a[i]](c[i][j-a[i]]指除去第i个物品中能达到j-a[i]重量的方案数即其他物品加上a[i](即算上第i个物品)后能达到j的重量的方案数,减去后,剩下的就是,不用第i个物品达到j的方案数);(a[i]表示当前物品的重量)具体步骤看程序。
ps:因为题目要求输出个位数,所以过程中必须取余10,但是在后面个位数减去个位数会造成负数的情况,所以在一些地方需要+10后再运算。
#include<iostream>
#include<cstdio>
using namespace std;
long long f[][],w[],b[][],x,n,m;
int main()
{
cin>>n>>m;
for (int i=;i<=n;i++) cin>>w[i];
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
f[i][j]=,b[i][j];
f[][]=;//刚开始前0个物品达到0的重量的方案数为一
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
if (j-w[i]>=) f[i][j]+=(f[i-][j-w[i]]+f[i-][j])%;//取或不取的方案数都加上
else f[i][j]+=f[i-][j]%; for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
if (j-w[i]>=) b[i][j]=(f[n][j]-b[i][j-w[i]]+)%;//不取第i个物品的达到j的重量的方案数由此得出,加10是为了避免个位与个位相减时出现负数。
else b[i][j]=f[n][j]%; for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
if (j!=m) cout<<b[i][j];
else cout<<b[i][j]<<endl;//输出
return ;
}
好啦
2287: 【POJ Challenge】消失之物的更多相关文章
- BZOJ.2287.[POJ Challenge]消失之物(退背包)
BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...
- [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理
消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...
- POJ Challenge消失之物
Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...
- bzoj2287:[POJ Challenge]消失之物
思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...
- bzoj2287 [POJ Challenge]消失之物
题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...
- 【bzoj2287】[POJ Challenge]消失之物 背包dp
题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...
- 【bozj2287】【[POJ Challenge]消失之物】维护多值递推
(上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...
- BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )
虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...
- BZOJ 2287 【POJ Challenge】消失之物(DP+容斥)
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 986 Solved: 572[Submit][S ...
- BZOJ2287: 【POJ Challenge】消失之物
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 254 Solved: 140[Submit][S ...
随机推荐
- Zerojudge解题心得
我进入娄山中学已经有1年多了,也就是说我学习编程也有1年多了,在这一年多的时间中,我已经对编程有了初步的了解.其实只要抓住平时的空闲时间加以利用,哪怕每个星期就做那么三四题,经过了一段时间沉淀,也会有 ...
- 【知识点】业务连接服务(BCS)认证概念整理
业务连接服务(BCS)认证概念整理 I. BDC认证模型 BDC服务支持两种认证模型:信任的子系统,模拟和代理. 在信任的子系统模型中,中间层(通常是Web服务器)通过一个固定的身份来向后端服务器取得 ...
- JAVA设计模式之享元模式
在阎宏博士的<JAVA与模式>一书中开头是这样描述享元(Flyweight)模式的: Flyweight在拳击比赛中指最轻量级,即“蝇量级”或“雨量级”,这里选择使用“享元模式”的意译,是 ...
- 解决eclipse中安装AIX2插件问题
为了做webservice,查了下,需要用到AXIS2(当然也有别的方法,貌似更复杂,详情可以参看:java开发webservice的几种方式).可试了N次,下载的codegen和service插件始 ...
- ArcGIS Viewer for Flex中引入google map作底图
在ArcGIS Viewer for Flex开发中,经常需要用到google map作为底图,我们不能通过ArcGIS Viewer for Flex - Application Builder轻易 ...
- JS,Jquery获取各种屏幕的宽度和高度
Javascript: 网页可见区域宽: document.body.clientWidth网页可见区域高: document.body.clientHeight网页可见区域宽: document.b ...
- threadlocal类
1.threadlocal对象为线程提供变量的副本,该副本为线程私有的,其它线程访问不到: 2.变量的副本存储在ThreadLocalMap对象中: 3.使用threadlocal时候,最好先使用in ...
- Hibernate day02笔记
对象状态与一级缓存 状态介绍 hibernate 规定三种状态:瞬时态.持久态.脱管态 状态 瞬时态:transient,session没有缓存对象,数据库也没有对应记录. ...
- linux 服务器登录显示lastlogin
1.参数修改: /etc/ssh/sshd_config 问价里边的 printlastlog 设置为yes /etc/ssh/sshd_config 问价里边的 printmotd 设置为yes 2 ...
- TIJ读书笔记04-方法重载
TIJ读书笔记04-方法重载 为什么会有方法重载 方法签名 如何区分重载 关于基本类型的重载 为什么会有方法重载 OOP的编程方式就是让程序的逻辑更加接近现实世界的逻辑. 而在现实世界中,自然语言本身 ...