Time Limit: 3 Sec  Memory Limit: 64 MB
Submit: 989  Solved: 660
[Submit][Status][Discuss]

Description

为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动。 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行中的无聊时间。玩了几局之后,大家觉得单纯玩扑克牌对于像他们这样的高智商人才来说太简单了。有人提出了扑克牌的一种新的玩法。 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第一张,然后取上面一叠的第一张作为新的一叠的第二张,再取下面一叠的第二张作为新的一叠的第三张……如此交替直到所有的牌取完。 如果对一叠6张的扑克牌1 2 3 4 5 6,进行一次洗牌的过程如下图所示:  从图中可以看出经过一次洗牌,序列1 2 3 4 5 6变为4 1 5 2 6 3。当然,再对得到的序列进行一次洗牌,又会变为2 4 6 1 3 5。 游戏是这样的,如果给定长度为N的一叠扑克牌,并且牌面大小从1开始连续增加到N(不考虑花色),对这样的一叠扑克牌,进行M次洗牌。最先说出经过洗牌后的扑克牌序列中第L张扑克牌的牌面大小是多少的科学家得胜。小联想赢取游戏的胜利,你能帮助他吗?

Input

有三个用空格间隔的整数,分别表示N,M,L (其中0< N ≤ 10 ^ 10 ,0 ≤ M ≤ 10^ 10,且N为偶数)。

Output

单行输出指定的扑克牌的牌面大小。

Sample Input

6 2 3

Sample Output

6

HINT

 

Source

非常巧妙的一道题、

通过找规律不难发现,第$i$个位置下一轮的位置为$2i \pmod {n + 1}$

那么下$m$轮的位置为$2^m i \pmod {n + 1}$

我们需要找到一个位置$x$,使得$2^m x \equiv L  \pmod {n + 1}$

那么$x \equiv L * 2^{-x} \pmod {n + 1}$

做完了。。

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<map>
#include<iostream>
#define int long long
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int x, y, N, M, L, mod;
int fastpow(int a, int p) {
int base = ;
while(p) {
if(p & ) base = (base * a) % mod;
a = (a * a) % mod; p >>= ;
}
return base % mod;
}
int exgcd(int a, int b, int &x, int &y) {
if(b == ) {x =; y = ; return a;}
int r = exgcd(b, a % b, x, y);
int t = x; x = y; y = t -(a / b) * y;
return r;
}
int inv(int a, int b) {
exgcd(a, b, x, y);
while(x < ) x += b;
return x % b;
}
main() {
N = read(); M = read(); L = read();
mod = N + ;
printf("%lld", L % mod * inv(fastpow(, M), mod) % mod);
}

BZOJ1965: [Ahoi2005]SHUFFLE 洗牌(exgcd 找规律)的更多相关文章

  1. 2018.11.07 bzoj1965: [Ahoi2005]SHUFFLE 洗牌(快速幂+exgcd)

    传送门 发现自己的程序跑得好慢啊233. 管他的反正AC了 先手玩样例找了一波规律发现题目要求的就是a∗2m≡l(modn+1)a*2^m\equiv l \pmod {n+1}a∗2m≡l(modn ...

  2. bzoj1965 [Ahoi2005]SHUFFLE 洗牌

    Description 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联 ...

  3. BZOJ1965 [Ahoi2005]SHUFFLE 洗牌 快速幂

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1965 题意概括 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取 ...

  4. 【bzoj1965】: [Ahoi2005]SHUFFLE 洗牌 数论-快速幂-扩展欧几里得

    [bzoj1965]: [Ahoi2005]SHUFFLE 洗牌 观察发现第x张牌 当x<=n/2 x=2x 当x>n/2 x=2x-n-1 好像就是 x=2x mod (n+1)  就好 ...

  5. 【BZOJ-1965】SHUFFLE 洗牌 快速幂 + 拓展欧几里德

    1965: [Ahoi2005]SHUFFLE 洗牌 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 541  Solved: 326[Submit][St ...

  6. BZOJ 1965: [Ahoi2005]SHUFFLE 洗牌( 数论 )

    对于第x个数, 下一轮它会到位置p. 当x<=N/2, p = x*2 当x>N/2, p = x*2%(N+1) 所以p = x*2%(N+1) 设一开始的位置为t, 那么t*2M%(N ...

  7. 1965: [Ahoi2005]SHUFFLE 洗牌

    1965: [Ahoi2005]SHUFFLE 洗牌 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 408  Solved: 240[Submit][St ...

  8. [AHOI2005] SHUFFLE 洗牌

    1965: [Ahoi2005]SHUFFLE 洗牌 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 952  Solved: 630[Submit][St ...

  9. 【BZOJ1965】[AHOI2005] SHUFFLE 洗牌(数学题)

    点此看题面 大致题意: 有一叠扑克牌编号为\(1\sim n\)(\(n\)为偶数),每次洗牌将扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第一张,然后取上面一叠的第一张作为新的一叠的第二 ...

随机推荐

  1. 怎么为android控件边缘添加阴影

    为控件设置一个有阴影感的背景图片即可,可以使用shape 在自定义shape中增加一层或多层,并错开,即可显示阴影效果.为增加立体感,按钮按下的时候,只设置一层.我们可以通过top, bottom, ...

  2. mac os安装macvim

    1 brew install macvim 安装 macvim 2 alias vim='/usr/local/Cellar/macvim/7.4-73_1/MacVim.app/Contents/M ...

  3. 使用Nginx、Keepalived构建文艺负载均衡

    面对网站服务器端负载增大的问题,是"拿15万¥买一台服务器"来解决,还是靠"加三倍服务器"来解决?还是用其它一些办法? 对于一个访问量日益增加的网站架构而言,从 ...

  4. Zend Optimizer安装、配置

    Zend Optimizer用优化代码的方法来提高php应用程序的执行速度.实现的原理是对那些在被最终执行之前由运行编译器(Run-Time Compiler)产生的代码进行优化.这里,我们下载最新版 ...

  5. WCF:无法满足对安全令牌的请求,因为身份验证失败。

    服务端和客户端如果有认证的话的这样: <wsHttpBinding> <binding name="WSHttpBinding_IService1" closeT ...

  6. 关于th,td,tr的一些相关标签

    tr表示行,td表示列,th其实也是表示列但是在这个标签中的文字会以粗体出现 <th>为表格标题,属性summar为摘要, <caption>标签为首部说明, <thea ...

  7. CSS之background-image:在一个元素中设置给定数量的背景图片

    众所周知,可以通过设置background-repeat的值来改变背景图片的重复次数.但有一个问题,background-repeat的值不是让图片只有1个,就是让图片铺满.如果只想设置给定数量的图片 ...

  8. React 内部属性与函数

    constructor 构造函数,在创建组件的时候调用一次. 例子: class TodoList extends React.Component { constructor(props, conte ...

  9. 关于 Android Studio 如何连接手机调试

    第一步:设置-> 打开开发者选项,以及USB调试模式 第二步:关于手机->版本号,点击版本号会弹出提示:已经处于开发者模式,无需操作 第三步:设置->在搜索框中输入HDB,此时会弹出 ...

  10. centos7.4 系统安装指导

    centos7 系统安装指导 安装前规划 下载安装文件 安装过程设置 安装后系统基本设置 安装前规划 CentOS 7.x系列只有64位系统,没有32位. 生产服务器建议安装CentOS-7-x86_ ...